Accurate and comprehensive identification of residual glycerides in biodiesel is an important part of fuel characterization due to the impact of glycerides on the fuel physicochemical properties. However, analysis of bound glycerol in biodiesel samples faces challenges due to lack of readily available standards of structurally complex glyceride species in nontraditional biodiesel feedstocks and a risk of misannotation in the presence of impurities in gas chromatographic separations. Here, we evaluate methane and isobutane chemical ionization-single quadrupole mass spectrometry combined with high-temperature gas chromatography separations for mapping monoacylglycerols, diacylglycerols, and triacylglycerols in biodiesel.
View Article and Find Full Text PDFA modified version of the Direct LSC method to correct for quenching effect was investigated for the determination of bio-originated fuel content in fuel samples produced from multiple biological starting materials. The modified method was found to be accurate in determining the percent bio-originated fuel to within 5% of the actual value for samples with quenching effects ≤43%. Analysis of highly quenched samples was possible when diluted with the exception of one sample with a 100% quenching effect.
View Article and Find Full Text PDFA novel method is described for the evaluation of irreversible adsorption and column bleed in gas chromatographic (GC) columns using a tandem GC approach. This work specifically determined the degree of irreversible adsorption behavior of specific sulfur and phosphorous containing test probe compounds at levels ranging from approximately 50 picograms (pg) to 1 nanogram (ng) on selected gas chromatographic columns. This method does not replace existing evaluation methods that characterize reversible adsorption but provides an additional tool.
View Article and Find Full Text PDF