The preparation and characterisation are described of a robust, reversible, hydrogen peroxide optical sensor, based on the fluorescent quenching of the dye ion-pair [Ru(bpy)(3)(2+)(Ph(4)B(-))(2)], by O(2) produced by the catalytic breakdown of H(2)O(2), utilizing the inorganic catalyst RuO(2).xH(2)O. The main feature of this system is the one-pot formulation of a coating ink that, when dried, forms an active single-layer fluorescence-based H(2)O(2) sensor, demonstrably capable of detecting H(2)O(2) over the range of 0.
View Article and Find Full Text PDFThe ruthenium(II) diimine complexes, such as ruthenium(II) tris(bipyridyl), Ru(bpy)3 2+, possess highly luminescent excited states that are not only readily quenched by oxygen but also by an increase in temperature. The former effect can be rendered insignificant by encapsulating the complex in an oxygen impermeable polymer, although encapsulation often leads also to a loss of temperature sensitivity. The luminescence properties of Ru(bpy)3 2+ encapsulated in PVA were studied as a function of oxygen concentration and temperature and found to be independent of the former, but still very sensitive towards the latter.
View Article and Find Full Text PDF