There is evidence that the insulin-like growth factor-I (IGF-I) receptor is required for transformation by a variety of viral and cellular oncogenes in a mouse embryo fibroblast model. To further investigate the IGF-I receptor signaling pathways that are required for the permissive effect of the receptor on transformation by SV40 T antigen, we established three independent fibroblast cell lines each from wild-type and IGF-I receptor null embryos (R-). We transfected the wild-type and R- cell lines with an SV40 T antigen plasmid and selected three clones from each cell line that expressed T antigen.
View Article and Find Full Text PDFWe have extended our previous yeast two-hybrid findings to show that 14-3-3beta also interacts with the insulin-like growth factor I receptor (IGFIR) in mammalian cells overexpressing both proteins and that the interaction involves serine 1283 and is dependent on receptor activation. Treatment of cells with the phorbol ester PMA stimulates the interaction of 14-3-3beta with the IGFIR in the absence of receptor tyrosine phosphorylation, suggesting that receptor activation leads to activation of an endogenous protein kinase that catalyzes the phosphorylation of serine 1283. To investigate the role of 14-3-3 proteins in IGF signal transduction, IGFIR structure-function studies were performed.
View Article and Find Full Text PDF