Background/aims: Protein-L-isoaspartyl methyltransferase (PIMT) is a methyltransferase that plays a crucial role in the repair of damaged proteins. In this study, we investigated whether ethanol exposure causes an accumulation of modified proteins bearing atypical isoaspartyl residues that may be related to impaired PIMT activity. We further sought to determine whether betaine administration could prevent the accumulation of these types of damaged proteins.
View Article and Find Full Text PDFBackground/aims: Previous studies in our laboratory implicated ethanol-induced decreases in hepatocellular S-adenosylmethionine to S-adenosylhomocysteine (SAM:SAH) ratios in lowering the activity of phosphatidylethanolamine methyltransferase (PEMT), which is associated with the generation of steatosis. Further in vitro studies showed that betaine supplementation could correct these alterations in the ratio as well as attenuate alcoholic steatosis. Therefore, we sought to determine whether the protective effect of betaine is via its effect on PEMT activity.
View Article and Find Full Text PDFDuring receptor-mediated endocytosis (RME), extracellular molecules are internalized after being recognized and bound to specific cell surface receptors. In previous studies of the asialoglycoprotein receptor (ASGPR) in rats, we showed that ethanol impairs RME at multiple ASGPR sites. Ethanol administration has been shown to increase apoptosis, and we demonstrated increased sensitization to apoptotic induction in hepatocytes from ethanol-fed rats.
View Article and Find Full Text PDFApoptotic cell death is a well-defined process that is controlled by intrinsic cellular mechanisms followed by the generation of apoptotic bodies and their subsequent rapid elimination through the action of phagocytic cells. Within the liver, the asialoglycoprotein receptor (ASGP-R) has been shown to be involved in the phagocytosis of apoptotic hepatocytes, as well as altered cellular endocytic events after ethanol administration. The goal of the present study was to further clarify the capacity of ASGP-R to phagocytose apoptotic cells in relationship to the damaging events that occur with alcohol consumption.
View Article and Find Full Text PDF