The TyrR transcription factor controls the expression of genes for the uptake and biosynthesis of aromatic amino acids in In the plant-associated and clinically significant proteobacterium UW5, the TyrR orthologue was previously shown to regulate genes that encode enzymes for synthesis of the plant hormone indole-3-acetic acid and for gluconeogenesis, indicating a broader function for the transcription factor. This study aimed to delineate the TyrR regulon of by comparing the transcriptomes of the wild type and a deletion strain. In , TyrR positively or negatively regulates the expression of over 150 genes.
View Article and Find Full Text PDFPlant parasitic nematodes (PPNs) seriously threaten global food security. Conventionally an integrated approach to PPN management has relied heavily on carbamate, organophosphate and fumigant nematicides which are now being withdrawn over environmental health and safety concerns. This progressive withdrawal has left a significant shortcoming in our ability to manage these economically important parasites, and highlights the need for novel and robust control methods.
View Article and Find Full Text PDFWe report here the draft genome sequence of Pseudomonas syringae GR12-2, a nitrogen-fixing, plant growth-promoting bacterium, isolated from the rhizosphere of an Arctic grass. The 6.6-Mbp genome contains 5,676 protein-coding genes, including a nitrogen-fixation island similar to that in P.
View Article and Find Full Text PDFThe soil bacterium Enterobacter cloacae UW5 produces the rhizosphere signaling molecule indole-3-acetic acid (IAA) via the indolepyruvate pathway. Expression of indolepyruvate decarboxylase, a key pathway enzyme encoded by ipdC, is upregulated by the transcription factor TyrR in response to aromatic amino acids. Some members of the TyrR regulon may also be controlled by branched-chain amino acids and here we show that expression from the ipdC promoter and production of IAA are downregulated by valine, leucine and isoleucine.
View Article and Find Full Text PDFWe report the complete genome sequence of Enterobacter cloacae UW5, an indole-3-acetic acid-producing rhizobacterium originally isolated from the rhizosphere of grass. The 4.9-Mbp genome has a G+C content of 54% and contains 4,496 protein-coding sequences.
View Article and Find Full Text PDFThe TyrR transcription factor regulates genes involved in the uptake and biosynthesis of aromatic amino acids in Enterobacteriaceae. Genes may be positively or negatively regulated depending on the presence or absence of each aromatic amino acid, all three of which function as cofactors for TyrR. In this report we detail the transcriptional control of two divergently transcribed genes, akr and ipdC, by TyrR, elucidated by promoter fusion expression assays and electrophoretic mobility shift assays to assess protein-DNA interactions.
View Article and Find Full Text PDFIndole-3-acetic acid (IAA) is an important phytohormone with the capacity to control plant development in both beneficial and deleterious ways. The ability to synthesize IAA is an attribute that many bacteria including both plant growth-promoters and phytopathogens possess. There are three main pathways through which IAA is synthesized; the indole-3-pyruvic acid, indole-3-acetamide and indole-3-acetonitrile pathways.
View Article and Find Full Text PDFThe capacity to produce the phytohormone indole-3-acetic acid (IAA) is widespread among bacteria that inhabit diverse environments such as soils, fresh and marine waters, and plant and animal hosts. Three major pathways for bacterial IAA synthesis have been characterized that remove the amino and carboxyl groups from the α-carbon of tryptophan via the intermediates indolepyruvate, indoleacetamide, or indoleacetonitrile; the oxidized end product IAA is typically secreted. The enzymes in these pathways often catabolize a broad range of substrates including aromatic amino acids and in some cases the branched chain amino acids.
View Article and Find Full Text PDFFEMS Microbiol Ecol
September 2011
Pseudomonas putida GR12-2 is well known as a plant growth-promoting rhizobacterium; however, phylogenetic analysis using the 16S rRNA gene and four housekeeping genes indicated that this strain forms a monophyletic group with the Pseudomonas syringae complex, which is composed of several species of plant pathogens. On the basis of these sequence analyses, we suggest that P. putida GR12-2 be redesignated as P.
View Article and Find Full Text PDFIn agricultural cropping systems, crop residues are sources of organic carbon (C), an important factor influencing denitrification. The effects of red clover, soybean, and barley plant residues and of glucose on denitrifier abundance, denitrification gene mRNA levels, nitrous oxide (N(2)O) emissions, and denitrification rates were quantified in anoxic soil microcosms for 72 h. nosZ gene abundances and mRNA levels significantly increased in response to all organic carbon treatments over time.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2009
Environmental conditions can change dramatically over a crop season and among locations in an agricultural field and can increase denitrification and emissions of the potent greenhouse gas nitrous oxide. In a previous study, changes in the overall size of the denitrifier community in a potato crop field were relatively small and did not correlate with variations in environmental conditions or denitrification rates. However, denitrifying bacteria are taxonomically diverse, and different members of the community may respond differently to environmental changes.
View Article and Find Full Text PDFThe plant growth-promoting rhizobacterium Enterobacter cloacae UW5 synthesizes the plant growth hormone indole-3-acetic acid (IAA) via the indole-3-pyruvate pathway utilizing the enzyme indole-3-pyruvate decarboxylase that is encoded by ipdC. In this bacterium, ipdC expression and IAA production occur in stationary phase and are induced by an exogenous source of tryptophan, conditions that are present in the rhizosphere. The aim of this study was to identify the regulatory protein that controls the expression of ipdC.
View Article and Find Full Text PDFAs a means of investigating gene function, we developed a robust transcription fusion reporter vector to measure gene expression in bacteria. The vector, pTH1522, was used to construct a random insert library for the Sinorhizobium meliloti genome. pTH1522 replicates in Escherichia coli and can be transferred to, but cannot replicate in, S.
View Article and Find Full Text PDFRpoS is a conserved alternative sigma factor that regulates the expression of many stress response genes in Escherichia coli. The RpoS regulon is large but has not yet been completely characterized. In this study, we report the identification of over 100 RpoS-dependent fusions in a genetic screen based on the differential expression of an operon-lacZ fusion bank in rpoS mutant and wild-type backgrounds.
View Article and Find Full Text PDFThough RpoS, an alternative sigma factor, is required for survival and adaptation of Escherichia coli under stress conditions, many strains have acquired independent mutations in the rpoS gene. The reasons for this apparent selective loss and the nature of the selective agent are not well understood. In this study, we found that some wild type strains grow poorly in succinate minimal media compared with isogenic strains carrying defined RpoS null mutations.
View Article and Find Full Text PDFAntimicrob Agents Chemother
November 2003
We show that an inducible rpoS antisense RNA complementary to the rpoS message can inhibit expression of RpoS in both exponential and stationary phases and can attenuate expression of the rpoS regulon in Escherichia coli. Plasmids containing rpoS antisense DNA expressed under the control of the T7lac promoter and T7 RNA polymerase were constructed, and expression of the rpoS antisense RNA was optimized in the pET expression system. rpoS antisense RNA levels could be manipulated to effectively control the expression of RpoS and RpoS-dependent genes.
View Article and Find Full Text PDFThe phytohormone indole-3-acetic acid (IAA) accumulates in the culture medium of the plant growth-promoting bacterium Pseudomonas putida GR12-2 only when grown in the presence of exogenous tryptophan, suggesting that expression of indolepyruvate decarboxylase, a key enzyme in the IAA biosynthesis pathway in this bacterium, may be regulated by tryptophan. To test this hypothesis, we isolated the promoter region for the ipdc gene encoding indolepyruvate decarboxylase by inverse polymerase chain reaction (PCR) and inserted it upstream of the bioluminescent reporter gene luxAB on a plasmid in P. putida GR12-2.
View Article and Find Full Text PDFAppl Environ Microbiol
August 2002
Many plant-associated bacteria synthesize the phytohormone indoleacetic acid (IAA). While IAA produced by phytopathogenic bacteria, mainly by the indoleacetamide pathway, has been implicated in the induction of plant tumors, it is not clear whether IAA synthesized by beneficial bacteria, usually via the indolepyruvic acid pathway, is involved in plant growth promotion. To determine whether bacterial IAA enhances root development in host plants, the ipdc gene that encodes indolepyruvate decarboxylase, a key enzyme in the indolepyruvic acid pathway, was isolated from the plant growth-promoting bacterium Pseudomonas putida GR12-2 and an IAA-deficient mutant constructed by insertional mutagenesis.
View Article and Find Full Text PDF