Fluorogenic substrates are essential tools for studying the activity of many enzymes including the protein tyrosine phosphatases (PTPs). Here, we have taken the first step toward the development of genetically encodable sensors for PTP activity using fluorescent and fluorogen-activating proteins. The Fluorescence-Activating and absorption Shifting Tag (FAST) is a small protein that becomes fluorescent upon binding to a small molecule dye.
View Article and Find Full Text PDFPost-translational modifications (PTMs) are invaluable regulatory tools for the control of catalytic functionality, protein-protein interactions, and signaling pathways. Historically, the study of phosphorylation as a PTM has been focused on serine, threonine, and tyrosine residues. In contrast, the significance of mammalian histidine phosphorylation remains largely unexplored.
View Article and Find Full Text PDFThe hydrogenation of CO in the presence of amines to formate, formamides, and methanol (MeOH) is a promising approach to streamlining carbon capture and recycling. To achieve this, understanding how catalyst design impacts selectivity and performance is critical. Herein we describe a thorough thermochemical analysis of the (de)hydrogenation catalyst, (PNP = 2,6-bis(di--butylphosphinomethyl)pyridine; Ru = Ru(CO)(H)) and correlate our findings to catalyst performance.
View Article and Find Full Text PDF