Background: Our institution recently completed an expansion of an acute care inpatient unit within a satellite hospital that does not include an on-site ICU or PICU. Because of expected increases in volume and acuity, new care models for Rapid Response Teams (RRTs) and Code Blue Teams were necessary.
Objectives: Using simulation-based training, our objectives were to define the optimal roles and responsibilities for team members (including ICU physicians via telemedicine), refine the staffing of RRTs and code Teams, and identify latent safety threats (LSTs) before opening the expanded inpatient unit.
Objective: Assess the utility of high fidelity simulation in understanding effectiveness of bag-valve ventilation in a simulated newborn intensive care unit vertical evacuation.
Participants: A total of 70 participants, (13 teams of 4-6 staff) including physicians, nurses, respiratory therapists and other support personnel participated in a 90-min evacuation sessions.
Methods: Two wireless high-fidelity newborn mannequins (Gaumand Scientific) provided real-time data of ventilation support during a NICU evacuation exercise.
Our ability to use human embryonic stem (hES) cells in cell replacement therapy for Parkinson's disease depends on the discovery of ways to simply and reliably differentiate a dopaminergic (DA) phenotype in these cells. Although several protocols exist for the differentiation of DA traits in hES, they involve the prolonged use of complex media with undefined components, cell conditioned media and/or co-culture with various cells, usually of animal origin. In this study, several well-characterized (H9, BG01) and several new uncharacterized (HUES7, HUES8) hES cell lines were studied for their capacity to differentiate into DA neurons in culture using a novel rapid protocol which uses only chemically-defined human-derived media additives and substrata.
View Article and Find Full Text PDFA previous study on the human tyrosine hydroxylase (TH) promoter revealed remarkable differences in the mechanism of TH gene regulation between the human and murine models. Indeed, a low degree of homology was observed in the sequence of TH promoters among human, mouse, and rat systems. Only five short conserved regions (CRs) could be identified among the three species.
View Article and Find Full Text PDFStudies on rodent bone marrow stromal cells (MSCs) have revealed a capacity, for at least a portion of cells, to express neuron-like traits after differentiation in culture. Little, however, is known about the ability of human MSCs in this regard. We show here that incubation with certain differentiation cocktails, particularly those that include reagents that increase cellular cAMP levels, produces a rapid (1-4 h) and transient (24-48 h) transformation of nearly all hMSCs into neuron-like cells displaying a complex network of processes using phase or scanning electron microscopic optics.
View Article and Find Full Text PDFThe development of cell replacement therapies for the treatment of neurodegenerative disorders such as Parkinson's disease (PD) may depend upon the successful differentiation of human neural stem/progenitor cells into dopamine (DA) neurons. We show here that primary human neural progenitors (HNPs) can be expanded and maintained in culture both as neurospheres (NSPs) and attached monolayers where they develop into neurons and glia. When transplanted into the 6-hydroxydopamine-lesioned rat striatum, undifferentiated NSPs survive longer (60% graft survival at 8-16 weeks vs.
View Article and Find Full Text PDFSelf-administration of either nicotine (NIC) or ethanol (ETH) has been extensively studied. This study addressed for the first time the self-administration of both substances when offered together. Male and female rats of different ages were offered NIC and ETH using the two- or three-bottle free-choice method.
View Article and Find Full Text PDF