Publications by authors named "Cheryl L Laffer"

Article Synopsis
  • Salt sensitivity of blood pressure (SSBP) is a significant risk factor for cardiovascular disease, influenced by sodium intake and is associated with changes in antigen-presenting cells (APCs) and the JAK2 signaling pathway.
  • The study utilized various methods, including transcriptomic analyses, mouse models, and immunophenotyping, to investigate the effects of high salt on blood pressure and the underlying mechanisms involving JAK2, STAT3, and SMAD3.
  • Results showed that high salt increases the expression of genes in the JAK/STAT/SMAD pathway in human monocytes, and the knockout of JAK2 in APCs significantly reduced salt-induced hypertension in mice, indicating a crucial role of this pathway in S
View Article and Find Full Text PDF

Background: Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular morbidity and mortality, yet the etiology is poorly understood. We previously found that serum/glucocorticoid-regulated kinase 1 (SGK1) and epoxyeicosatrienoic acids (EETs) regulate epithelial sodium channel (ENaC)-dependent sodium entry into monocyte-derived antigen-presenting cells (APCs) and activation of NADPH oxidase, leading to the formation of isolevuglandins (IsoLGs) in SSBP. Whereas aldosterone via the mineralocorticoid receptor (MR) activates SGK1 leading to hypertension, our past findings indicate that levels of plasma aldosterone do not correlate with SSBP, and there is little to no MR expression in APCs.

View Article and Find Full Text PDF

Over the past 3 decades, a substantial body of high-quality evidence has guided the diagnosis and management of elevated blood pressure (BP) in the outpatient setting. In contrast, there is a lack of comparable evidence for guiding the management of elevated BP in the acute care setting, resulting in significant practice variation. Throughout this scientific statement, we use the terms acute care and inpatient to refer to care received in the emergency department and after admission to the hospital.

View Article and Find Full Text PDF

The year 2024 marks the centennial of the initiation of the American Heart Association. Over the past 100 years, the American Heart Association has led groundbreaking discoveries in cardiovascular disease including salt sensitivity of blood pressure, which has been studied since the mid-1900s. Salt sensitivity of blood pressure is an important risk factor for cardiovascular events, but the phenotype remains unclear because of insufficient understanding of the underlying mechanisms and lack of feasible diagnostic tools.

View Article and Find Full Text PDF

Race is a social construct, but self-identified Black people are known to have higher prevalence and worse outcomes of hypertension than White people. This may be partly due to the disproportionate incidence of salt sensitivity of blood pressure in Black people, a cardiovascular risk factor that is independent of blood pressure and has no proven therapy. We review the multiple physiological systems involved in regulation of blood pressure, discuss what, if anything is known about the differences between Black and White people in these systems and how they affect salt sensitivity of blood pressure.

View Article and Find Full Text PDF

Background: The mechanisms by which salt increases blood pressure in people with salt sensitivity remain unclear. Our previous studies found that high sodium enters antigen-presenting cells (APCs) via the epithelial sodium channel and leads to the production of isolevuglandins and hypertension. In the current mechanistic clinical study, we hypothesized that epithelial sodium channel-dependent isolevuglandin-adduct formation in APCs is regulated by epoxyeicosatrienoic acids (EETs) and leads to salt-sensitive hypertension in humans.

View Article and Find Full Text PDF

Salt sensitivity of blood pressure is a phenomenon in which blood pressure changes according to dietary sodium intake. Our previous studies found that high salt activates antigen presenting cells, resulting in the development of hypertension. The mechanisms by which salt-induced immune cell activation is regulated in salt sensitivity of blood pressure are unknown.

View Article and Find Full Text PDF

Even though it has been more than a decade since renal denervation (RDN) was first used to treat hypertension and an intense effort on researching this therapy has been made, it is still not clear how RDN fits into the antihypertensive arsenal. There is no question that RDN lowers blood pressure (BP), it does so to an extent at best corresponding to one antihypertensive drug. The procedure has an excellent safety record.

View Article and Find Full Text PDF

Background: Salt sensitivity of blood pressure is an independent predictor of cardiovascular morbidity and mortality. The exact mechanism by which salt intake increases blood pressure and cardiovascular risk is unknown. We previously found that sodium entry into antigen-presenting cells (APCs) via the amiloride-sensitive epithelial sodium channel EnaC (epithelial sodium channel) leads to the formation of IsoLGs (isolevuglandins) and release of proinflammatory cytokines to activate T cells and modulate salt-sensitive hypertension.

View Article and Find Full Text PDF

The gut microbiota has recently gained attention due to its association with cardiovascular health, cancers, gastrointestinal disorders, and non-communicable diseases. One critical question is how the composition of the microbiota contributes to cardiovascular diseases (CVDs). Insightful reviews on the gut microbiota, its metabolites and the mechanisms that underlie its contribution to CVD are limited.

View Article and Find Full Text PDF

Purpose Of Review: The study aims to review recent advances in knowledge on the interplay between miRNAs and the sex-determining Region Y (SRY)-related high-mobility-group box 6 (Sox6) in physiology and pathophysiology, highlighting an important role in autoimmune and cardiometabolic conditions.

Recent Findings: The transcription factor Sox6 is an important member of the SoxD family and plays an indispensable role in adult tissue homeostasis, regeneration, and physiology. Abnormal expression of the Sox6 gene has been implicated in several disease conditions including diabetes, cardiomyopathy, autoimmune diseases, and hypertension.

View Article and Find Full Text PDF

Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular morbidity and mortality that is seen in both hypertensive and normotensive populations. Insulin resistance (IR) strongly correlates with SSBP and affects nearly 50% of salt sensitive people. While the precise mechanism by which IR and SSBP relate remains elusive, several common pathways are involved in the genesis of both processes, including vascular dysfunction and immune activation.

View Article and Find Full Text PDF

Salt sensitivity of blood pressure (SSBP) is an independent risk factor for mortality and morbidity due to cardiovascular disease, and disproportionately affects blacks and women. Several mechanisms have been proposed, including exaggerated activation of sodium transporters in the kidney leading to salt retention and water. Recent studies have found that in addition to the renal epithelium, myeloid immune cells can sense sodium the epithelial Na channel (ENaC), which leads to activation of the nicotinamide adenine dinucleotide phosphate oxidase enzyme complex, increased fatty acid oxidation, and production of isolevuglandins (IsoLGs).

View Article and Find Full Text PDF

Salt sensitivity of blood pressure is an independent risk factor for cardiovascular mortality not only in hypertensive but also in normotensive adults. The diagnosis of salt sensitivity of blood pressure is not feasible in the clinic due to lack of a simple diagnostic test, making it difficult to investigate therapeutic strategies. Most research efforts to understand the mechanisms of salt sensitivity of blood pressure have focused on renal regulation of sodium.

View Article and Find Full Text PDF

Elevated cardiovascular risk including stroke, heart failure, and heart attack is present even after normalization of blood pressure in patients with hypertension. Underlying immune cell activation is a likely culprit. Although immune cells are important for protection against invading pathogens, their chronic overactivation may lead to tissue damage and high blood pressure.

View Article and Find Full Text PDF

Aims: Prior studies have focused on the role of the kidney and vasculature in salt-induced modulation of blood pressure; however, recent data indicate that sodium accumulates in tissues and can activate immune cells. We sought to examine mechanisms by which salt causes activation of human monocytes both in vivo and in vitro.

Methods And Results: To study the effect of salt in human monocytes, monocytes were isolated from volunteers to perform several in vitro experiments.

View Article and Find Full Text PDF

Purpose Of Review: With the advent of highly active antiretroviral therapy (ART), the life span of persons with HIV (PWH) has been nearly normalized. With aging, prevalence of the metabolic syndrome (MetS), including hypertension, has increased in the HIV population and exceeds that in the general population in some studies. This is due to a combination of traditional risk factors in addition to the effects attributable to the virus and ART.

View Article and Find Full Text PDF

Purpose Of Review: Salt sensitivity of blood pressure (SSBP) is an independent predictor of death due to cardiovascular events and affects nearly 50% of the hypertensive and 25% of the normotensive population. Strong evidence indicates that reducing sodium (Na) intake decreases blood pressure (BP) and cardiovascular events. The precise mechanisms of how dietary Na contributes to elevation and cardiovascular disease remain unclear.

View Article and Find Full Text PDF