Synthesis and biological activities of some quinolinone and dihydroquinolinone p38 MAP kinase inhibitors are reported. Modifications to the dihydroquinolinone pharmacophore revealed that dihydroquinolinone may be replaced with a quinolinone pharmacophore and lead to enhanced p38 inhibitory activity. From a study of C-7 substitutions by amino acid side chains, a very potent series of compounds in the p38 enzyme assays was identified.
View Article and Find Full Text PDFDevelopment for a class of potent 3,4-dihydropyrido(3,2-d)pyrimidone inhibitors of p38a MAP kinase is described. Modification of N-1 aryl and C-6 arylsulfide in 3,4-dihydropyrido(3,2-d)pyrimidone analogues for the interaction with the hydrophobic pockets in p38 active site is also discussed.
View Article and Find Full Text PDFImidazo[1,2-a]pyridyl N-arylpyridazinones were hybridized from the classic pyridinylimidazoles and the more recent dual hydrogen bond acceptors, resulting in a new structural class of selective p38 MAP kinase inhibitors.
View Article and Find Full Text PDFThe development of potent, orally bioavailable (in rat) and selective dihydroquinazolinone inhibitors of p38alpha MAP kinase is described. These analogues are hybrids of a pyridinylimidazole p38alpha inhibitor reported by Merck Research Laboratories and VX-745. Optimization of the C-5 phenyl and the C-7 piperidinyl substituents led to the identification of 15i which gave excellent suppression of TNF-alpha production in LPS-stimulated whole blood (IC(50)=10nM) and good oral exposure in rats (F=68%, AUCn PO=0.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2003
A new class of p38 antagonists based on 3,4-dihydropyrido[3,2,-d]pyrimidine scaffold has been developed. These inhibitors exhibit unprecedented selectivity towards p38 over other very closely related kinases. Compounds 25, 33, and 34 were identified as benchmark analogues for follow-up studies.
View Article and Find Full Text PDFBioorg Med Chem Lett
February 2002
Trisubstituted pyridazines were synthesized and evaluated as in vitro inhibitors of p38MAPK. The most active isomers were those possessing an aryl group alpha and a heteroaryl group beta relative to the nitrogen atom in the 2-position of the central pyridazine. Additionally, substitution in the 6-position of the central pyridazine with a variety of dialkylamino substituents afforded a set of inhibitors having good (p38 IC50 1-20 nM) in vitro activity.
View Article and Find Full Text PDF