Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases including Pierce's disease of grapevines. X. fastidiosa is thought to induce disease by colonizing and clogging xylem vessels through the formation of cell aggregates and bacterial biofilms.
View Article and Find Full Text PDFMol Plant Microbe Interact
October 2011
Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases, including Pierce's disease of grapevines. Disease manifestation by X. fastidiosa is associated with the expression of several factors, including the type IV pili that are required for twitching motility.
View Article and Find Full Text PDFFourteen Xylella fastidiosa isolates from grapevines exhibiting Pierce's disease symptoms in California, Texas, and South Carolina were examined for type IV pilus-mediated twitching motility, a phenotype previously observed in a Temecula isolate from California. All isolates except one from South Carolina (SC 19A97) exhibited colonies with a peripheral fringe on PW agar, a feature indicative of twitching motility; however, when individual cells of SC 19A97 were examined at higher magnifications twitching motility was observed. The presence and width of colony peripheral fringes were related to the amount of bovine serum albumin (BSA) present in the medium; no or low levels of BSA (0-1.
View Article and Find Full Text PDFXylella fastidiosa, an important phytopathogenic bacterium, causes serious plant diseases including Pierce's disease of grapevine. It is reported here that type I and type IV pili of X. fastidiosa play different roles in twitching motility, biofilm formation and cell-cell aggregation.
View Article and Find Full Text PDFXylella fastidiosa is a xylem-limited nonflagellated bacterium that causes economically important diseases of plants by developing biofilms that block xylem sap flow. How the bacterium is translocated downward in the host plant's vascular system against the direction of the transpiration stream has long been a puzzling phenomenon. Using microfabricated chambers designed to mimic some of the features of xylem vessels, we discovered that X.
View Article and Find Full Text PDFCaulobacter crescentus cells treated with amdinocillin, an antibiotic which specifically inhibits the cell elongation transpeptidase penicillin binding protein 2 in Escherichia coli, exhibit defects in stalk elongation and morphology, indicating that stalk synthesis may be a specialized form of cell elongation. In order to investigate this possibility further, we examined the roles of two other proteins important for cell elongation, RodA and MreB. We show that, in C.
View Article and Find Full Text PDF