Publications by authors named "Cheryl Chiang"

Due to the intrinsic genetic instability of tumor cells, aberrant and novel tumor antigens can be expressed and serve as potential targets for cancer immunotherapy. This intrinsic feature can be exploited by cancer immunotherapy, particularly with cancer vaccination. Personalized cancer vaccination strategy can be a potent approach to trigger a broad-based antitumor response that is both beneficial and relevant to individual cancer patients.

View Article and Find Full Text PDF

As the majority of ovarian cancer (OC) patients are diagnosed with metastatic disease, less than 40% will survive past 5 years after diagnosis. OC is characterized by a succession of remissions and recurrences. The most promising time point for immunotherapeutic interventions in OC is following debulking surgery.

View Article and Find Full Text PDF

The emergence of ablative therapies has revolutionized the treatment of inoperable solid tumors. Cryoablation stands out for its uniqueness of operation based on hypothermia, and for its ability to unleash the native tumor antigens, resulting in the generation of anti-tumor immune responses. It is not clearly understood how alterations in the rate of freeze impact the immune response outcomes.

View Article and Find Full Text PDF

T cells are important for controlling ovarian cancer (OC). We previously demonstrated that combinatorial use of a personalized whole-tumor lysate-pulsed dendritic cell vaccine (OCDC), bevacizumab (Bev), and cyclophosphamide (Cy) elicited neoantigen-specific T cells and prolonged OC survival. Here, we hypothesize that adding acetylsalicylic acid (ASA) and low-dose interleukin (IL)-2 would increase the vaccine efficacy in a recurrent advanced OC phase I trial (NCT01132014).

View Article and Find Full Text PDF

Background: Novel therapeutic strategies in ovarian cancer (OC) are needed as the survival rate remains dismally low. Although dendritic cell-based cancer vaccines are effective in eliciting therapeutic responses, their complex and costly manufacturing process hampers their full clinical utility outside specialized clinics. Here, we describe a novel approach of generating a rapid and effective cancer vaccine using ascites-derived monocytes for treating OC.

View Article and Find Full Text PDF

New treatments are urgently needed in patients with ovarian cancer (OC), as diagnosis is delayed in many instances, resulting in 85% recurrence of the disease following surgery and standard chemotherapy. OC is considered to be an immunological type of cancer, despite its limited response to current immunotherapy options, including vaccination. Thus, additional interventions may improve their efficacy.

View Article and Find Full Text PDF

Treatment of solid tumors by ablation techniques has gained momentum in the recent years due to their technical simplicity and reduced morbidity as juxtaposed to surgery. Cryoablation is one of such techniques, known for its uniqueness to destroy the tumors by freezing to lethal temperatures. Freezing the tumor locally and allowing it to remain unleashes an array of tumor antigens to be exposed to the immune system, paving the way for the generation of anti-tumor immune responses.

View Article and Find Full Text PDF

Although different types of therapeutic vaccines against established cancerous lesions in various indications have been developed since the 1990s, their clinical benefit is still very limited. This observed lack of effectiveness in cancer eradication may be partially due to the often deficient immunocompetent status of cancer patients, which may facilitate tumor development by different mechanisms, including immune evasion. The most frequently used cellular vehicle in clinical trials are dendritic cells (DCs), thanks to their crucial role in initiating and directing immune responses.

View Article and Find Full Text PDF

The field of cancer immunotherapy has been revolutionized with the use of immune checkpoint blockade antibodies such as anti-programmed cell death 1 protein (PD-1) and chimeric antigen receptor T cells. Significant clinical benefits are observed in different cancer types with these treatments. While considerable efforts are made in augmenting tumor-specific T cell responses with these therapies, other immunotherapies that actively stimulate endogenous anti-tumor T cells and generating long-term memory have received less attention.

View Article and Find Full Text PDF

We conducted a pilot clinical trial testing a personalized vaccine generated by autologous dendritic cells (DCs) pulsed with oxidized autologous whole-tumor cell lysate (OCDC), which was injected intranodally in platinum-treated, immunotherapy-naïve, recurrent ovarian cancer patients. OCDC was administered alone (cohort 1, = 5), in combination with bevacizumab (cohort 2, = 10), or bevacizumab plus low-dose intravenous cyclophosphamide (cohort 3, = 10) until disease progression or vaccine exhaustion. A total of 392 vaccine doses were administered without serious adverse events.

View Article and Find Full Text PDF

With its vast amount of uncharacterized and characterized T cell epitopes available for activating CD4⁺ T helper and CD8⁺ cytotoxic lymphocytes simultaneously, whole tumor antigen represents an attractive alternative source of antigens as compared to tumor-derived peptides and full-length recombinant tumor proteins for dendritic cell (DC)-based immunotherapy. Unlike defined tumor-derived peptides and proteins, whole tumor lysate therapy is applicable to all patients regardless of their HLA type. DCs are essentially the master regulators of immune response, and are the most potent antigen-presenting cell population for priming and activating naïve T cells to target tumors.

View Article and Find Full Text PDF

Background: Human adenoviruses (HAdVs) can cause a variety of human illnesses, with associated temporal and geographic changes in disease incidence. We report the emergence of an outbreak of HAdV infections in Singapore, presumably caused by a change of the predominating type to HAdV-7. We examined the clinical features of children admitted with HAdV infection to 1 institution and the risk factors for severe infection.

View Article and Find Full Text PDF

Introduction: Dendritic cells (DCs) are the most important antigen-presenting cell population for activating antitumor T-cell responses; therefore, they offer a unique opportunity for specific targeting of tumors.

Areas Covered: We will discuss the critical factors for the enhancement of DC vaccine efficacy: different DC subsets, types of in vitro DC manufacturing protocol, types of tumor antigen to be loaded and finally different adjuvants for activating them. We will cover potential combinatorial strategies with immunomodulatory therapies: depleting T-regulatory (Treg) cells, blocking VEGF and blocking inhibitory signals.

View Article and Find Full Text PDF

Purpose: Whole tumor lysates are promising antigen sources for dendritic cell (DC) therapy as they contain many relevant immunogenic epitopes to help prevent tumor escape. Two common methods of tumor lysate preparations are freeze-thaw processing and UVB irradiation to induce necrosis and apoptosis, respectively. Hypochlorous acid (HOCl) oxidation is a new method for inducing primary necrosis and enhancing the immunogenicity of tumor cells.

View Article and Find Full Text PDF

Purpose: Ovarian cancer, like most solid tumors, is in dire need of effective therapies. The significance of this trial lies in its promise to spearhead the development of combination immunotherapy and to introduce novel approaches to therapeutic immunomodulation, which could enable otherwise ineffective vaccines to achieve clinical efficacy.

Rationale: Tumor-infiltrating T cells have been associated with improved outcome in ovarian cancer, suggesting that activation of antitumor immunity will improve survival.

View Article and Find Full Text PDF

Novel strategies for the therapy of recurrent ovarian cancer are warranted. We report a study of a combinatorial approach encompassing dendritic cell (DC)-based autologous whole tumor vaccination and anti-angiogenesis therapy, followed by the adoptive transfer of autologous vaccine-primed CD3/CD28-co-stimulated lymphocytes. Recurrent ovarian cancer patients for whom tumor lysate was available from prior cytoreductive surgery underwent conditioning with intravenous bevacizumab and oral metronomic cyclophosphamide, sequentially followed by (1) bevacizumab plus vaccination with DCs pulsed with autologous tumor cell lysate supernatants, (2) lymphodepletion and (3) transfer of 5 × 10 autologous vaccine-primed T-cells in combination with the vaccine.

View Article and Find Full Text PDF

"Day-7" myeloid DCs are commonly used in the clinic. However, there is a strong need to develop DCs faster that have the same potent immunostimulatory capacity as "Day-7" myeloid DCs and at the same time minimizing time, labor and cost of DC preparations. Although "2 days" DCs can elicit peptide-specific responses, they have not been demonstrated to engulf, process and present complex whole tumor lysates, which could be more convenient and personalized source of tumor antigens than defined peptides.

View Article and Find Full Text PDF

Background: Dendritic cells (DCs) are the most potent antigen-presenting cell population for activating tumor-specific T cells. Due to the wide range of methods for generating DCs, there is no common protocol or defined set of criteria to validate the immunogenicity and function of DC vaccines.

Methods: Monocyte-derived DCs were generated during 4 days of culture with recombinant granulocyte-macrophage colony stimulating factor and interleukin-4, and pulsed with tumor lysate produced by hypochlorous acid oxidation of tumor cells.

View Article and Find Full Text PDF

Whole tumor cell lysates can serve as excellent multivalent vaccines for priming tumor-specific CD8(+) and CD4(+) T cells. Whole cell vaccines can be prepared with hypochlorous acid oxidation, UVB-irradiation and repeat cycles of freeze and thaw. One major obstacle to successful immunotherapy is breaking self-tolerance to tumor antigens.

View Article and Find Full Text PDF

Although cancer vaccines with defined antigens are commonly used, the use of whole tumor cell preparations in tumor immunotherapy is a very promising approach and can obviate some important limitations in vaccine development. Whole tumor cells are a good source of TAAs and can induce simultaneous CTLs and CD4(+) T helper cell activation. We review current approaches to prepare whole tumor cell vaccines, including traditional methods of freeze-thaw lysates, tumor cells treated with ultraviolet irradiation, and RNA electroporation, along with more recent methods to increase tumor cell immunogenicity with HOCl oxidation or infection with replication-incompetent herpes simplex virus.

View Article and Find Full Text PDF

The production of hypochlorous acid (HOCl) is a characteristic of granulocyte activation, a hallmark of the early phase of innate immune responses. In this study, we show that, in addition to its well-established role as a microbicide, HOCl can act as a natural adjuvant of adaptive immunity. HOCl enhances the T cell responses to the model Ag OVA, facilitating the processing and presentation of this protein via the class II MHC pathway.

View Article and Find Full Text PDF

Purpose: Hypochlorous acid, a product of neutrophil myeloperoxidase, is a powerful enhancer of antigen processing and presentation. In this study, we examine whether ovarian epithelial cells (SK-OV-3) exposed to hypochlorous acid can stimulate T cells from patients with ovarian epithelial cancer that recognize common tumor antigens as well as autologous tumor.

Experimental Design: T cells from human leukocyte antigen (HLA)-A2(+) and HLA-A2(-) patients or healthy controls were stimulated with autologous dendritic cells cocultured with the generic ovarian tumor line SK-OV-3, previously exposed to hypochlorous acid.

View Article and Find Full Text PDF

Background: Ovarian cancer commonly relapses after remission and new strategies to target microscopic residual diseases are required. One approach is to activate tumor-specific cytotoxic T cells with dendritic cells loaded with tumor cells. In order to enhance their immunogenicity, ovarian tumor cells (SK-OV-3, which express two well-characterized antigens HER-2/neu and MUC-1) were killed by oxidation with hypochlorous acid (HOCl).

View Article and Find Full Text PDF

Dendritic cells (DCs) respond to danger signals from tissue injury by amplifying their immune-inducing capacity. In the cancer context, this may lead to in vivo antitumor synergism between DCs and DNA-damaging chemotherapeutic agents. Neither the interaction between DCs and dying tumor cells nor whether different ways of inducing cell injury can deliver danger signals of different strength to DCs nor the potential role of damaged DNA as a danger signal has been studied rigorously.

View Article and Find Full Text PDF