Several systematic reviews support the use of nature-based interventions (NBIs) as a mechanism of enhancing mental health and wellbeing. However, the available evidence for the effectiveness of these interventions is fragmentary and mixed. The heterogeneity of existing evidence and significant fragmentation of knowledge within the field make it difficult to draw firm conclusions regarding the effectiveness of NBIs.
View Article and Find Full Text PDFPurpose: To assess personal and demographic risk factors for proliferative diabetic retinopathy in African Americans with type 2 diabetes.
Methods: In this prospective, non-interventional, cross-sectional case-control study, 380 African Americans with type 2 diabetes were enrolled. Participants were recruited prospectively and had to have either: (1) absence of diabetic retinopathy after ≥10 years of type 2 diabetes, or (2) presence of proliferative diabetic retinopathy when enrolled.
Purpose: To examine the relationship between proportion of African ancestry (PAA) and proliferative diabetic retinopathy (PDR) and to identify genetic loci associated with PDR using admixture mapping in African Americans with type 2 diabetes (T2D).
Methods: Between 1993 and 2013, 1440 participants enrolled in four different studies had fundus photographs graded using the Early Treatment Diabetic Retinopathy Study scale. Cases (n = 305) had PDR while controls (n = 1135) had nonproliferative diabetic retinopathy (DR) or no DR.
The process of wound healing must be tightly regulated to achieve successful restoration of injured tissue. Previously, we demonstrated that when corneal epithelium is injured, nucleotides and neuronal factors are released to the extracellular milieu, generating a Ca(2+) wave from the origin of the wound to neighboring cells. In the present study we sought to determine how the communication between epithelial cells in the presence or absence of neuronal wound media is affected by hypoxia.
View Article and Find Full Text PDFEpithelial wounds usually heal relatively quickly, but repair may be impaired by environmental stressors, such as hypoxic or diabetic states, rendering patients vulnerable to a number of corneal pathologies. Though this response appears simple, at first, years of research have uncovered the complicated biochemical pathways coordinating the wound healing response. Here, we investigate signaling cascades and individual proteins involved in the corneal epithelium's self-repair.
View Article and Find Full Text PDFPreviously, we demonstrated that nucleotides released upon mechanical injury to corneal epithelium activate purinergic (P2) receptors resulting in mobilization of a Ca(2+) wave. However, the tissue is extensively innervated and communication between epithelium and neurons is critical and not well understood. Therefore, we developed a co-culture of primary trigeminal neurons and human corneal limbal epithelial cells.
View Article and Find Full Text PDFPurpose: Previously, the authors demonstrated that the lack of the P2X(7) receptor impairs epithelial wound healing and stromal collagen organization in the cornea. The goal here is to characterize specific effects of the P2X(7) receptor on components of the corneal stroma extracellular matrix.
Methods: Unwounded corneas from P2X(7) knockout mice (P2X(7) (-/-)) and C57BL/6J wild type mice (WT) were fixed and prepared for quantitative and qualitative analysis of protein expression and localization using Real Time PCR and immunohistochemistry.