Publications by authors named "Cheryl Bock"

Background:  Increased adhesivity of red blood cells (RBCs) to endothelial cells (ECs) may contribute to organ dysfunction in malaria, sickle cell disease, and diabetes. RBCs normally export nitric oxide (NO)-derived vascular signals, facilitating blood flow. S-nitrosothiols (SNOs) are thiol adducts formed in RBCs from precursor NO upon the oxygenation-linked allosteric transition in hemoglobin.

View Article and Find Full Text PDF

Immunity Related GTPases (IRG) are a family of proteins produced during infection that regulate membrane remodeling events in cells, particularly autophagy and mitophagy. The human IRGM gene has been strongly associated with Crohn's disease and other inflammatory diseases through Genome-Wide Association studies. Absence of Irgm1 in mice prompts intestinal inflammation, autoimmunity, and impaired immune control of pathogenic bacteria and protozoa.

View Article and Find Full Text PDF

Background: ATP1A2 mutations cause hemiplegic migraine with or without epilepsy or acute reversible encephalopathy. Typical onset is in adulthood or older childhood without subsequent severe long-term developmental impairments.

Aim: We aimed to describe the manifestations of early onset severe ATP1A2-related epileptic encephalopathy and its underlying mutations in a cohort of seven patients.

View Article and Find Full Text PDF

Embryonic development is a complex process that is unamenable to direct observation. In this study, we implanted a window to the mouse uterus to visualize the developing embryo from embryonic day 9.5 to birth.

View Article and Find Full Text PDF

A fundamental challenge in studying principles of organization used by the olfactory system to encode odor concentration information has been identifying comprehensive sets of activated odorant receptors (ORs) across a broad concentration range inside freely behaving animals. In mammals, this has recently become feasible with high-throughput sequencing-based methods that identify populations of activated ORs In this study, we characterized the mouse OR repertoires activated by the two odorants, acetophenone (ACT) and 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), from 0.01% to 100% (v/v) as starting concentrations using phosphorylated ribosomal protein S6 capture followed by RNA-Seq.

View Article and Find Full Text PDF

Field cancerization is a premalignant process marked by clones of oncogenic mutations spreading through the epithelium. The timescales of intestinal field cancerization can be variable and the mechanisms driving the rapid spread of oncogenic clones are unknown. Here we use a Cancer rainbow (Crainbow) modelling system for fluorescently barcoding somatic mutations and directly visualizing the clonal expansion and spread of oncogenes.

View Article and Find Full Text PDF

The leucine-rich G protein-coupled receptor-5 (LGR5) is expressed in adult tissue stem cells of many epithelia, and its overexpression is negatively correlated with cancer prognosis. LGR5 potentiates WNT/β-catenin signaling through its unique constitutive internalization property that clears negative regulators of the WNT-receptor complex from the membrane. However, both the mechanism and physiological relevance of LGR5 internalization are unclear.

View Article and Find Full Text PDF

mutations occur in the majority of low-grade gliomas and lead to the production of the oncometabolite, D-2-hydroxyglutarate (D-2HG). To understand the effects of tumor-associated mutant (IDH1-R132H) on both the neural stem cell (NSC) population and brain tumorigenesis, genetically faithful cell lines and mouse model systems were generated. Here, it is reported that mouse NSCs expressing Idh1-R132H displayed reduced proliferation due to p53-mediated cell-cycle arrest as well as a decreased ability to undergo neuronal differentiation.

View Article and Find Full Text PDF

Homeostatic maintenance of T cells with broad clonal diversity is influenced by both continuing output of young T cells from the thymus and ongoing turnover of preexisting clones in the periphery. In the absence of infection, self and commensal antigens are thought to play important roles in selection and homeostatic maintenance of the T-cell pool. Most naïve T cells are short-lived due to lack of antigen encounter, whereas antigen-experienced T cells may survive and persist as long-lived clones.

View Article and Find Full Text PDF

Dendritic epidermal T cells (DETCs) are generated exclusively in the fetal thymus and maintained in the skin epithelium throughout postnatal life of the mouse. DETCs have restricted antigenic specificity as a result of their exclusive usage of a canonical TCR. Although the importance of the TCR in DETC development has been well established, the exact role of TCR signaling in DETC homeostasis and function remains incompletely defined.

View Article and Find Full Text PDF

Faba bean (Vicia faba L.) has been little examined from a genetic or genomic perspective despite its status as an established food and forage crop with some key pharmaceutical factors such as vicine and convicine (VC), which provoke severe haemolysis in genetically susceptible humans. We developed next-generation sequencing libraries to maximize information to elucidate the VC pathway or relevant markers as well as other genes of interest for the species.

View Article and Find Full Text PDF

Phosphatidylinositol-specific phospholipase C2 (PLC2) is a signaling enzyme with hydrolytic activity against membrane-bound phosphoinositides. It catalyzes the cleavage of phosphatidylinositol(4,5)bisphosphate (PtdIns(4,5)P 2) into two initial second messengers, myo-inositol-1,4,5-trisphosphate (InsP 3) and diacylglycerol (DAG). The former, as well as its fully phosphorylated derivative, myo-inositol-1,2,3,4,5,6-hexakisphosphate (InsP 6), play a major role in calcium signaling events within the cell, while DAG may be used in the regeneration of phospholipids or as a precursor for phosphatidic acid (PA) biosynthesis, an important signaling molecule involved in both biotic and abiotic types of stress tolerance.

View Article and Find Full Text PDF

Low phytic acid (lpa) crops are low in phytic acid and high in inorganic phosphorus (Pi). In this study, two lpa pea genotypes, 1-150-81, 1-2347-144, and their progenitor CDC Bronco were grown in field trials for two years. The lpa genotypes were lower in IP₆ and higher in Pi when compared to CDC Bronco.

View Article and Find Full Text PDF

Background: myo-Inositol (Ins) metabolism during early stages of seed development plays an important role in determining the distributional relationships of some seed storage components such as the antinutritional factors, sucrose galactosides (also known as raffinose oligosaccharides) and phytic acid (PhA) (myo-inositol 1,2,3,4,5,6-hexakisphosphate). The former is a group of oligosaccharides, which plays a role in desiccation at seed maturation. They are not easily digested by monogastric animals, hence their flatulence-causing properties.

View Article and Find Full Text PDF

Conversion to glycogen is a major fate of ingested glucose in the body. A rate-limiting enzyme in the synthesis of glycogen is glycogen synthase encoded by two genes, GYS1, expressed in muscle and other tissues, and GYS2, primarily expressed in liver (liver glycogen synthase). Defects in GYS2 cause the inherited monogenic disease glycogen storage disease 0.

View Article and Find Full Text PDF

Phosphatidylinositol-specific phospholipase C (PtdIns-PLC2) plays a central role in the phosphatidylinositol-specific signal transduction pathway. It catalyses the hydrolysis of membrane-bound phosphatidylinositol 4,5-bisphosphate to produce two second messengers, sn-1,2-diacylglycerol and inositol 1,4,5-trisphosphate. The former is a membrane activator of protein kinase C in mammalian systems, and the latter is a Ca(2+) modulator which induces distinctive oscillating bursts of cytosolic Ca(2+), resulting in regulation of gene expression and activation of proteins.

View Article and Find Full Text PDF

Background: Stored glycogen is an important source of energy for skeletal muscle. Human genetic disorders primarily affecting skeletal muscle glycogen turnover are well-recognised, but rare. We previously reported that a frameshift/premature stop mutation in PPP1R3A, the gene encoding RGL, a key regulator of muscle glycogen metabolism, was present in 1.

View Article and Find Full Text PDF

The mouse gene Recql is a member of the RecQ subfamily of DEx-H-containing DNA helicases. Five members of this family have been identified in both humans and mice, and mutations in three of these, BLM, WRN, and RECQL4, are associated with human diseases and a cellular phenotype that includes genomic instability. To date, no human disease has been associated with mutations in RECQL and no cellular phenotype has been associated with its deficiency.

View Article and Find Full Text PDF

The Ran-binding protein 2 (RanBP2) is a large multimodular and pleiotropic protein. Several molecular partners with distinct functions interacting specifically with selective modules of RanBP2 have been identified. Yet, the significance of these interactions with RanBP2 and the genetic and physiological role(s) of RanBP2 in a whole-animal model remain elusive.

View Article and Find Full Text PDF

Leukotriene B(4) mediates diverse inflammatory diseases through the G protein-coupled receptors BLT1 and BLT2. In this study, we developed mice deficient in BLT1 and BLT2 by simultaneous targeted disruption of these genes. The BLT1/BLT2 double-deficient mice developed normally and peritoneal exudate cells showed no detectable responses to leukotriene B(4) confirming the deletion of the BLT1/BLT2 locus.

View Article and Find Full Text PDF

The PDC (pyruvate dehydrogenase complex) is strongly inhibited by phosphorylation during starvation to conserve substrates for gluconeogenesis. The role of PDHK4 (pyruvate dehydrogenase kinase isoenzyme 4) in regulation of PDC by this mechanism was investigated with PDHK4-/- mice (homozygous PDHK4 knockout mice). Starvation lowers blood glucose more in mice lacking PDHK4 than in wild-type mice.

View Article and Find Full Text PDF

Assembly of the gene encoding T cell receptor alpha (Tcra) is characterized by an orderly progression of primary and secondary V(alpha)-to-J(alpha) recombination events across the J(alpha) array, but the targeting mechanisms responsible for this progression are mostly unknown. Studies have shown that the T early-alpha promoter is important in targeting primary Tcra rearrangements. We found that T early-alpha and a previously unknown promoter associated with J(alpha)49 targeted primary recombination to discrete sets of constant alpha region (C(alpha))-distal J(alpha) segments and together directed nearly all normal primary recombination events.

View Article and Find Full Text PDF

The cloning and identification of full-length cDNA fragments coding for the Brassica napus phosphatidylinositol-specific phospholipase C2 (BnPLC2), phosphatidylinositol 3-kinase (BnVPS34) and phosphatidylinositol synthase (BnPtdIns S1) is described. In addition, two complementary fragments (120 nucleotides long) corresponding to Arabidopsis PtdIns 4-kinase (PtdIns 4-K) and PtdIns-4-phosphate 5-kinase (PtdIns4P 5-K) sequences were chemically synthesized. These, as well as the cDNA clones, were used as probes to study the corresponding steady state mRNA levels in different tissues and developmental stages of B.

View Article and Find Full Text PDF

The interaction of CD22 with alpha2,6-linked sialic acid ligands has been widely proposed to regulate B lymphocyte function and migration. Here, we generated gene-targeted mice that express mutant CD22 molecules that do not interact with these ligands. CD22 ligand binding regulated the expression of cell surface CD22, immunoglobulin M and major histocompatibility complex class II on mature B cells, maintenance of the marginal zone B cell population, optimal B cell antigen receptor-induced proliferation, and B cell turnover rates.

View Article and Find Full Text PDF

The CCCH tandem zinc finger protein, Zfp36l2, like its better-known relative tristetraprolin (TTP), can decrease the stability of AU-rich element-containing transcripts in cell transfection studies; however, its physiological importance is unknown. We disrupted Zfp36l2 in mice, resulting in decreased expression of a truncated protein in which the N-terminal 29 amino acids had been deleted (DeltaN-Zfp36l2). Mice derived from different clones of ES cells exhibited complete female infertility, despite evidence from embryo and ovary transplantation experiments that they could gestate and rear wild-type young.

View Article and Find Full Text PDF