Publications by authors named "Cheryl A Woolhead"

The folding and targeting of hydrophobic transmembrane domains poses a major challenge to the cell. Several membrane proteins have been shown to gain some degree of secondary structure within the ribosome tunnel and to retain this conformation throughout maturation. However, there is little information on one of the largest classes of eukaryotic membrane proteins; the G protein-coupled receptors (GPCRs).

View Article and Find Full Text PDF

Ribosomes are responsible for the synthesis of all cellular proteins. Due to the diversity of sequence and properties, it was initially believed that translating nascent chains would travel unhindered through the ribosome exit tunnel, however a small but increasing number of proteins have been identified that interact with the exit tunnel to induce translational arrest, () secretion monitor (SecM) is one such stalling peptide. How and why these peptides interact with the exit tunnel is not fully understood, however key features required for stalling appear to be an essential peptide arrest motif at the C-terminus and compaction of the nascent chain within the exit tunnel upon stalling.

View Article and Find Full Text PDF

The relationship between protein synthesis, folding, and disulfide formation within the endoplasmic reticulum (ER) is poorly understood. Previous studies have suggested that pre-existing disulfide links are absolutely required to allow protein folding and, conversely, that protein folding occurs prior to disulfide formation. To address the question of what happens first within the ER, that is, protein folding or disulfide formation, we studied folding events at the early stages of polypeptide chain translocation into the mammalian ER using stalled translation intermediates.

View Article and Find Full Text PDF

Although detailed pictures of ribosome structures are emerging, little is known about the structural and cotranslational folding properties of nascent polypeptide chains at the atomic level. Here we used solution-state NMR spectroscopy to define a structural ensemble of a ribosome-nascent chain complex (RNC) formed during protein biosynthesis in Escherichia coli, in which a pair of immunoglobulin-like domains adopts a folded N-terminal domain (FLN5) and a disordered but compact C-terminal domain (FLN6). To study how FLN5 acquires its native structure cotranslationally, we progressively shortened the RNC constructs.

View Article and Find Full Text PDF

Membrane protein insertion is controlled by proteinaceous factors embedded in the lipid bilayer. Bacterial inner membrane proteins utilise the Sec translocon as the major facilitator of insertion; however some proteins are Sec independent and instead require only YidC. A common feature of YidC substrates is the exposure of a signal anchor sequence when translation is close to completion; this allows minimal time for targeting and favours a post-translational insertion mechanism.

View Article and Find Full Text PDF

Cotranslational targeting of membrane proteins is mediated by the universally conserved signal recognition particle (SRP). In eukaryotes, SRP attenuates translation during targeting; however, in prokaryotes, a simplified SRP is believed to carry out targeting during continuing translation. Here, we show a detailed stepwise analysis of the targeting of subunit c of the F(0) component of the bacterial ATP synthase (F(0)c) to the inner membrane.

View Article and Find Full Text PDF

In this report, we describe insights into the function of the ribosome tunnel that were obtained through an analysis of an unusual 25 residue N-terminal motif (EspP(1-25) ) associated with the signal peptide of the Escherichia coli EspP protein. It was previously shown that EspP(1-25) inhibits signal peptide recognition by the signal recognition particle, and we now show that fusion of EspP(1-25) to a cytoplasmic protein causes it to aggregate. We obtained two lines of evidence that both of these effects are attributable to the conformation of EspP(1-25) inside the ribosome tunnel.

View Article and Find Full Text PDF

When the export of E. coli SecM is blocked, a 17 amino acid motif near the C terminus of the protein induces a translation arrest from within the ribosome tunnel. Here we used a recently described application of fluorescence resonance energy transfer (FRET) to gain insight into the mechanism of translation arrest.

View Article and Find Full Text PDF

Fluorescence resonance energy transfer measurements reveal that a transmembrane sequence within a nascent membrane protein folds into a compact conformation near the peptidyltransferase center and remains folded as the sequence moves through a membrane bound ribosome into the translocon. This compact conformation is compatible with an alpha helix because nearly the same energy transfer efficiency was observed when the transmembrane sequence was integrated into the lipid bilayer. Since the transmembrane sequence unfolds upon emerging from a free ribosome, this nascent chain folding is ribosome induced and stabilized.

View Article and Find Full Text PDF

Previous studies have demonstrated that signal peptides bind to the signal recognition particle (SRP) primarily via hydrophobic interactions with the 54-kDa protein subunit. The crystal structure of the conserved SRP ribonucleoprotein core, however, raised the surprising possibility that electrostatic interactions between basic amino acids in signal peptides and the phosphate backbone of SRP RNA may also play a role in signal sequence recognition. To test this possibility we examined the degree to which basic amino acids in a signal peptide influence the targeting of two Escherichia coli proteins, maltose binding protein and OmpA.

View Article and Find Full Text PDF

A series of thylakoid membrane proteins, including PsbX, PsbY and PsbW, are synthesized with cleavable signal peptides yet inserted using none of the known Sec/SRP/Tat/Oxa1-type insertion machineries. Here, we show that, although superficially similar to Sec-type signal peptides, these thylakoidal signal peptides contain very different determinants. First, we show that basic residues in the N-terminal domain are not important, ruling out electrostatic interactions as an essential element of the insertion mechanism, and implying a fundamentally different targeting mechanism when compared with the structurally similar M13 procoat.

View Article and Find Full Text PDF