Background: A salient effect of addictive drugs is to hijack the dopamine reward system, an evolutionarily conserved driver of goal-directed behavior and learning. Reduced dopamine type 2 receptor availability in the striatum is an important pathophysiological mechanism for addiction that is both consequential and causal for other molecular, cellular, and neuronal network differences etiologic for this disorder. Here, we sought to identify gene expression changes attributable to innate low expression of the gene in the striatum and specific to striatal indirect medium spiny neurons (iMSNs).
View Article and Find Full Text PDFGenome-wide association studies (GWAS) of complex, heritable, behavioral phenotypes have yielded an incomplete accounting of the genetic influences. The identified loci explain only a portion of the observed heritability, and few of the loci have been shown to be functional. It is clear that current GWAS techniques overlook key components of phenotypically relevant genetic variation, either because of sample size, as is frequently asserted, or because of methodology.
View Article and Find Full Text PDFBackground: Animal and human studies indicate that GABBR1, encoding the GABAB1 receptor subunit, and SLC6A1, encoding the neuronal gamma-aminobutyric acid (GABA) transporter GAT1, play a role in addiction by modulating synaptic GABA. Therefore, variants in these genes might predict risk/resilience for alcoholism.
Methods: This study included 3 populations that differed by ethnicity and alcoholism phenotype: African American (AA) men: 401 treatment-seeking inpatients with single/comorbid diagnoses of alcohol and drug dependence, 193 controls; Finnish Caucasian men: 159 incarcerated alcoholics, half with comorbid antisocial personality disorder, 181 controls; and a community sample of Plains Indian (PI) men and women: 239 alcoholics, 178 controls.