The pathophysiology of sickle cell disease (SCD) is characterized by hemolytic anemia and vaso-occlusion, although its impact on the adaptive immune responses remains incompletely understood. To comprehensibly profile the humoral immune responses, we immunized SCD mice with T cell-independent (TI) and T cell-dependent (TD) antigens. Our study showed that SCD mice have significantly enhanced type 2 TI (TI-2) immune responses in a manner dependent on the level of type I IFN (IFN-I), while maintaining similar or decreased TD immune responses depending on the route of antigen administration.
View Article and Find Full Text PDFSickle cell disease (SCD) is a hereditary hemoglobinopathy characterized by painful vaso-occlusive crises (VOC) and chronic hemolysis. The mononuclear phagocyte system is pivotal to SCD pathophysiology, but the mechanisms governing monocyte/macrophage differentiation remain unknown. This study examined the influence of hemolysis on circulating monocyte trajectories in SCD.
View Article and Find Full Text PDFBabesia divergens is an apicomplexan parasite that infects human red blood cells (RBCs), initiating cycles of invasion, replication, and egress, resulting in extensive metabolic modification of the host cells. Babesia is an auxotroph for most of the nutrients required to sustain these cycles. There are currently limited studies on the biochemical pathways that support these critical processes, necessitating the high-resolution global metabolomics approach described here to uncover the metabolic interactions between parasite and host RBC.
View Article and Find Full Text PDFFront Cell Infect Microbiol
October 2022
Babesiosis is a zoonosis and an important blood-borne human parasitic infection that has gained attention because of its growing infection rate in humans by transfer from animal reservoirs. represents a potential threat to the blood supply because asymptomatic infections in man are common, and blood from such donors can cause severe disease in certain recipients. Extracellular vesicles (EVs) are vesicles released by cells that contain a complex mixture of proteins, lipids, glycans, and genetic information that have been shown to play important roles in disease pathogenesis and susceptibility, as well as cell-cell communication and immune responses.
View Article and Find Full Text PDFSickle red blood cells (RBCs) represent a naturally existing host-cell resistance mechanism to hemoparasite infections. We investigate the basis of this resistance using Babesia divergens grown in sickle (SS) and sickle trait (AS) cells. We found that oxygenation and its corresponding effect on RBC sickling, frequency of fetal hemoglobin positive (HbF+) cells, cellular redox environment, and parasite proliferation dynamics, all played a role in supporting or inhibiting Babesia proliferation.
View Article and Find Full Text PDFis a genus of intraerythrocytic protozoan parasites belonging to the exclusively parasitic phylum Apicomplexa [...
View Article and Find Full Text PDFis an intraerythrocytic, obligate Apicomplexan parasite that has, in the last century, been implicated in human infections via zoonosis and is now widespread, especially in parts of the USA and Europe. It is naturally transmitted by the bite of a tick, but transfused blood from infected donors has also proven to be a major source of transmission. When infected, most humans are clinically asymptomatic, but the parasite can prove to be lethal when it infects immunocompromised individuals.
View Article and Find Full Text PDFPatients with sickle cell disease (SCD) suffer from intravascular hemolysis-associated vascular injury and tissue damage. Classical monocytes (CMo), which are the most abundant of circulating monocytes, are activated in SCD, but the cause and consequences of activation remain incompletely understood. We found a positive correlation between total plasma heme levels and circulating interferon-α (IFN-α) in patients with SCD along with upregulation of the type I IFN (IFN-I) inducible genes in sort-purified SCD patients' CMo by transcriptome analysis.
View Article and Find Full Text PDFRed blood cell alloimmunization remains a barrier for safe and effective transfusions in sickle cell disease (SCD), but the associated risk factors remain largely unknown. Intravascular hemolysis, a hallmark of SCD, results in the release of heme with potent immunomodulatory activity, although its effect on SCD humoral response, specifically alloimmunization, remains unclear. Here, we found that cell-free heme suppresses human B-cell plasmablast and plasma cell differentiation by inhibiting the DOCK8/STAT3 signaling pathway, which is critical for B-cell activation, as well as by upregulating heme oxygenase 1 (HO-1) through its enzymatic byproducts, carbon monoxide and biliverdin.
View Article and Find Full Text PDFPurpose Of Review: As human babesiosis caused by apicomplexan parasites of the Babesia genus is associated with transfusion-transmitted illness and relapsing disease in immunosuppressed populations, it is important to report novel findings relating to parasite biology that may be responsible for such pathology. Blood screening tools recently licensed by the FDA are also described to allow understanding of their impact on keeping the blood supply well tolerated.
Recent Findings: Reports of tick-borne cases within new geographical regions such as the Pacific Northwest of the USA, through Eastern Europe and into China are also on the rise.
Babesiosis is considered an emerging disease because its incidence has significantly increased in the last 30 years, providing evidence of the expanding range of this rare but potentially life-threatening zoonotic disease. Babesia divergens is a causative agent of babesiosis in humans and cattle in Europe. The recently sequenced genome of B.
View Article and Find Full Text PDFis an obligate intracellular protozoan parasite that causes zoonotic disease. Central to its pathogenesis is the ability of the parasite to invade host red blood cells of diverse species, and, once in the host blood stream, to manipulate the composition of its population to allow it to endure unfavorable conditions. Here we will review key in vitro studies relating to the survival strategies that adopts during its intraerythrocytic development to persist and how proliferation is restored in the parasite population once optimum conditions return.
View Article and Find Full Text PDFis an intra-erythrocytic parasite that causes malaria-like symptoms in infected people. As the erythrocyte provides the parasite with the infra-structure to grow and multiply, any perturbation to the cell should impact parasite viability. Support for this comes from the multitude of studies that have shown that the sickle trait has in fact been selected because of the protection it provides against a related Apicomplexan parasite, , that causes malaria.
View Article and Find Full Text PDFTransmembrane protein 30A () is the β-subunit of P4-ATPases which function as flippase that transports aminophospholipids such as phosphatidylserine from the outer to the inner leaflets of the plasma membrane to maintain asymmetric distribution of phospholipids. It has been documented that deficiency of led to exposure of phosphatidylserine. However, the role of remains largely unknown.
View Article and Find Full Text PDFThe intraerythrocytic parasite is the number 1 cause of transfusion-transmitted infection and can induce serious, often life-threatening complications in immunocompromised individuals including transfusion-dependent patients with sickle cell disease (SCD). Despite the existence of strong long-lasting immunological protection against a second infection in mouse models, little is known about the cell types or the kinetics of protective adaptive immunity mounted following infection, especially in infection-prone SCD that are thought to have an impaired immune system. Here, we show, using a mouse infection model, that infected wild-type (WT) mice mount a very strong adaptive immune response, characterized by (1) coordinated induction of a robust germinal center (GC) reaction; (2) development of follicular helper T (T) cells that comprise ∼30% of splenic CD4 T cells at peak expansion by 10 days postinfection; and (3) high levels of effector T-cell cytokines, including interleukin 21 and interferon γ, with an increase in the secretion of antigen (Ag)-specific antibodies (Abs).
View Article and Find Full Text PDFHuman babesiosis is an emerging tick-borne parasitic disease and blood transfusion-transmitted infection primarily caused by the apicomplexan parasite, Babesia microti. There is no licensed vaccine for B. microti and the development of a reliable serological screening test would contribute to ensuring the safety of the donated blood supply.
View Article and Find Full Text PDFHuman babesiosis is a global emerging infectious disease caused by intraerythrocytic parasites of the genus Babesia. Its biology has remained largely unexplored due to a lack of critical tools and techniques required to define the various stages and phases of the parasite's cycle in its host RBC and the interplay between host and parasite. This article presents a powerful set of tools combining stage synchronization of the parasite with a platform that encompasses both a flow cytometric evaluation of the subpopulation structure of the parasite population together with a morphological assessment of the population parasites using light microscopy of conventional Giemsa stained smears.
View Article and Find Full Text PDFBabesiosis is an emerging zoonosis now found in several areas of the world. Using PCR and indirect immunofluorescence assay, we have diagnosed the first case of human babesiosis caused by Babesia microti in Spain. Diagnosis was delayed because of the nonspecific clinical symptoms that occurred in an immunocompetent patient.
View Article and Find Full Text PDFApicomplexan parasites include those of the genera Plasmodium, Cryptosporidium, and Toxoplasma and those of the relatively understudied zoonotic genus Babesia In humans, babesiosis, particularly transfusion-transmitted babesiosis, has been emerging as a major threat to public health. Like malaria, the disease pathology is a consequence of the parasitemia which develops through cyclical replication of Babesia parasites in host erythrocytes. However, there are no exoerythrocytic stages in Babesia, so targeting of the blood stage and associated proteins to directly prevent parasite invasion is the most desirable option for effective disease control.
View Article and Find Full Text PDFBabesia parasites cause a malaria-like febrile illness by infection of red blood cells (RBCs). Despite the growing importance of this tick-borne infection, its basic biology has been neglected. Using novel synchronization tools, the sequence of intra-erythrocytic events was followed from invasion through development and differentiation to egress.
View Article and Find Full Text PDFCurr Clin Microbiol Rep
December 2015
Human babesiosis is a zoonotic disease caused by protozoan parasites of the genus, primarily in the Northeastern and Midwest United States due to , and Western Europe due to . Parasites are transmitted by the bite of the ixodid tick when the vector takes a blood meal from the vertebrate host, and the economic importance of bovine babesiosis is well understood. The pathology of human disease is a direct result of the parasite's ability to invade host's red blood cells.
View Article and Find Full Text PDFHum Vaccin Immunother
March 2016
With drug resistance to available therapeutics continuing to develop against Plasmodium falciparum malaria, the development of an effective vaccine candidate remains a major research goal. Successful interruption of invasion of parasites into erythrocytes during the blood stage of infection will prevent the severe clinical symptoms and complications associated with malaria. Previously studied blood stage antigens have highlighted the hurdles that are inherent to this life-cycle stage, namely that highly immunogenic antigens are also globally diverse, resulting in protection only against the vaccine strain, or that naturally acquired immunity to blood stage antigens do not always correlate with actual protection.
View Article and Find Full Text PDFHuman babesiosis is a zoonosis primarily transmitted through Ixodes ticks and alternatively by routes such as blood transfusions from asymptomatic donors. We report the first case of human babesiosis caused by Babesia divergens in a patient with HIV. This study also focuses on elucidating the possible transmission route of infection in this patient, who received numerous blood transfusions but showed patent symptoms only after splenectomy.
View Article and Find Full Text PDFBabesia divergens causes significant morbidity and mortality in cattle and splenectomized or immunocompromised individuals. Here, we present a 10.7-Mb high-quality draft genome of this parasite close to chromosome resolution that will enable comparative genome analyses and synteny studies among related parasites.
View Article and Find Full Text PDF