Publications by authors named "Cherrie K Donawho"

Background: Prolactin receptor (PRLR) is an attractive antibody therapeutic target with expression across a broad population of breast cancers. Antibody efficacy, however, may be limited to subtypes with either PRLR overexpression and/or those where estradiol no longer functions as a mitogen and are, therefore, reliant on PRLR signaling for growth. In contrast a potent PRLR antibody-drug conjugate (ADC) may provide improved therapeutic outcomes extending beyond either PRLR overexpressing or estradiol-insensitive breast cancer populations.

View Article and Find Full Text PDF

PARP inhibitors have recently been approved as monotherapies for the treatment of recurrent ovarian cancer and metastatic -associated breast cancer, and ongoing studies are exploring additional indications and combinations with other agents. PARP inhibitors trap PARP onto damaged chromatin when combined with temozolomide and methyl methanesulfonate, but the clinical relevance of these findings remains unknown. PARP trapping has thus far been undetectable in cancer cells treated with PARP inhibitors alone.

View Article and Find Full Text PDF

ABBV-075 is a potent and selective BET family bromodomain inhibitor that recently entered phase I clinical trials. Comprehensive preclinical characterization of ABBV-075 demonstrated broad activity across cell lines and tumor models, representing a variety of hematologic malignancies and solid tumor indications. In most cancer cell lines derived from solid tumors, ABBV-075 triggers prominent G cell-cycle arrest without extensive apoptosis.

View Article and Find Full Text PDF

Unlabelled: Poly(ADP-ribose) polymerases (PARP1, -2, and -3) play important roles in DNA damage repair. As such, a number of PARP inhibitors are undergoing clinical development as anticancer therapies, particularly in tumors with DNA repair deficits and in combination with DNA-damaging agents. Preclinical evidence indicates that PARP inhibitors potentiate the cytotoxicity of DNA alkylating agents.

View Article and Find Full Text PDF

Despite clinical efficacy, current approved agents targeting EGFR are associated with on-target toxicities as a consequence of disrupting normal EGFR function. MAb 806 is a novel EGFR antibody that selectively targets a tumor-selective epitope suggesting that a mAb 806-based therapeutic would retain antitumor activity without the on-target toxicities associated with EGFR inhibition. To enable clinical development, a humanized variant of mAb 806 designated ABT-806 was generated and is currently in phase 1 trials.

View Article and Find Full Text PDF

ABT-348 [1-(4-(4-amino-7-(1-(2-hydroxyethyl)-1H-pyrazol-4-yl)thieno[3,2-c]pyridin-3-yl)phenyl)-3-(3-fluorophenyl)urea] is a novel ATP-competitive multitargeted kinase inhibitor with nanomolar potency (IC(50)) for inhibiting binding and cellular autophosphorylation of Aurora B (7 and 13 nM), C (1 and 13 nM), and A (120 and 189 nM). Cellular activity against Aurora B is reflected by inhibition of phosphorylation of histone H3, induction of polyploidy, and inhibition of proliferation of a variety of leukemia, lymphoma, and solid tumor cell lines (IC(50) = 0.3-21 nM).

View Article and Find Full Text PDF

PARP-1, the most abundant member of the PARP superfamily of nuclear enzymes, has emerged as a promising molecular target in the past decade particularly for the treatment of cancer. A number of PARP-1 inhibitors, including veliparab discovered at Abbott, have advanced into different stages of clinical trials. Herein we describe the development of a new tetrahydropyridopyridazinone series of PARP-1 inhibitors.

View Article and Find Full Text PDF

In an effort to identify kinase inhibitors with dual KDR/Aurora B activity and improved aqueous solubility compared to the Abbott dual inhibitor ABT-348, a series of novel pyrazole pyrimidines structurally related to kinase inhibitor AS703569 were prepared. SAR work provided analogs with significant cellular activity, measureable aqueous solubility and moderate antitumor activity in a mouse tumor model after weekly ip dosing. Unfortunately these compounds were pan-kinase inhibitors that suffered from narrow therapeutic indices which prohibited their use as antitumor agents.

View Article and Find Full Text PDF

Purpose: Longitudinal changes of 3'-[(18) F]fluoro-3'-deoxythymidine (FLT) and 2-deoxy-2-[(18) F]fluoro-D-glucose (FDG) in response to irinotecan therapy in an animal model of colorectal cancer were compared.

Procedures: SCID/CB-17 mice with HCT116 tumors were treated with 50 mg/kg irinotecan by intraperitoneal injection weekly for 3 weeks. FLT and FDG-positron emission tomography (PET) were performed at baseline, the day after each treatment, and 5 days after the first treatment.

View Article and Find Full Text PDF

Purpose: PARP inhibitors are being developed as therapeutic agents for cancer. More than six compounds have entered clinical trials. The majority of these compounds are β-nicotinamide adenine dinucleotide (NAD(+))-competitive inhibitors.

View Article and Find Full Text PDF

Aurora kinase B inhibitors induce apoptosis secondary to polyploidization and have entered clinical trials as an emerging class of neocytotoxic chemotherapeutics. We demonstrate here that polyploidization neutralizes Mcl-1 function, rendering cancer cells exquisitely dependent on Bcl-XL/-2. This "addiction" can be exploited therapeutically by combining aurora kinase inhibitors and the orally bioavailable BH3 mimetic, ABT-263, which inhibits Bcl-XL, Bcl-2, and Bcl-w.

View Article and Find Full Text PDF

We have developed a series of phenylpyrrolidine- and phenylpiperidine-substituted benzimidazole carboxamide poly(ADP-ribose) polymerase (PARP) inhibitors with excellent PARP enzyme potency as well as single-digit nanomolar cellular potency. These efforts led to the identification of (S)-2-(2-fluoro-4-(pyrrolidin-2-yl)phenyl)-1H-benzimidazole-4-carboxamide (22b, A-966492). Compound 22b displayed excellent potency against the PARP-1 enzyme with a K(i) of 1 nM and an EC(50) of 1 nM in a whole cell assay.

View Article and Find Full Text PDF

Purpose: ABT-888, currently in phase 2 trials, is a potent oral poly(ADP-ribose) polymerase inhibitor that enhances the activity of multiple DNA-damaging agents, including temozolomide (TMZ). We investigated ABT-888+TMZ combination therapy in multiple xenograft models representing various human tumors having different responses to TMZ.

Experimental Design: ABT-888+TMZ efficacy in xenograft tumors implanted in subcutaneous, orthotopic, and metastatic sites was assessed by tumor burden, expression of poly(ADP-ribose) polymer, and O(6)-methylguanine methyltransferase (MGMT).

View Article and Find Full Text PDF

Small molecule inhibitors of PARP-1 have been pursued by various organizations as potential therapeutic agents either capable of sensitizing cytotoxic treatments or acting as stand-alone agents to combat cancer. As one of the strategies to expand our portfolio of PARP-1 inhibitors, we pursued unsaturated heterocycles to replace the saturated cyclic amine derivatives appended to the benzimidazole core. Not only did a variety of these new generation compounds maintain high enzymatic potency, many of them also displayed robust cellular activity.

View Article and Find Full Text PDF

We have developed a series of cyclic amine-containing benzimidazole carboxamide PARP inhibitors with a methyl-substituted quaternary center at the point of attachment to the benzimidazole ring system. These compounds exhibit excellent PARP enzyme potency as well as single-digit nanomolar cellular potency. These efforts led to the identification of 3a (2-[(R)-2-methylpyrrolidin-2-yl]-1H-benzimidazole-4-carboxamide, ABT-888), currently in human phase I clinical trials.

View Article and Find Full Text PDF

ABT-888 is a potent, orally bioavailable PARP-1/2 inhibitor shown to potentiate DNA damaging agents. The ability to potentiate temozolomide (TMZ) and develop a biological marker for PARP inhibition was evaluated in vivo. Doses/schedules that achieve TMZ potentiation in the B16F10 syngeneic melanoma model were utilized to develop an ELISA to detect a pharmacodynamic marker, ADP ribose polymers (pADPr), after ABT 888 treatment.

View Article and Find Full Text PDF

We have developed a series of cyclic amine-containing benzimidazole carboxamide poly(ADP-ribose)polymerase (PARP) inhibitors, with good PARP-1 enzyme potency, as well as cellular potency. These efforts led to the identification of a lead preclinical candidate, 10b, 2-(1-propylpiperidin-4-yl)-1H-benzimidazole-4-carboxamide (A-620223). 10b displayed very good potency against both the PARP-1 enzyme with a K(i) of 8nM and in a whole cell assay with an EC(50) of 3nM.

View Article and Find Full Text PDF

Purpose: To evaluate the preclinical pharmacokinetics and antitumor efficacy of a novel orally bioavailable poly(ADP-ribose) polymerase (PARP) inhibitor, ABT-888.

Experimental Design: In vitro potency was determined in a PARP-1 and PARP-2 enzyme assay. In vivo efficacy was evaluated in syngeneic and xenograft models in combination with temozolomide, platinums, cyclophosphamide, and ionizing radiation.

View Article and Find Full Text PDF

ABT-869 is a structurally novel, receptor tyrosine kinase (RTK) inhibitor that is a potent inhibitor of members of the vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) receptor families (e.g., KDR IC50 = 4 nmol/L) but has much less activity (IC50s > 1 micromol/L) against unrelated RTKs, soluble tyrosine kinases, or serine/threonine kinases.

View Article and Find Full Text PDF

A major obstacle in understanding the etiology of malignant melanoma is the lack of mouse models and transplantable cell lines. We have recently developed a model of primary melanoma in C3H mice induced by ethanol and UV light. The present study characterizes three cell lines, SM190.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7ur3tq15v18m45kbkkqbvd4slqphujar): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once