Publications by authors named "Chernev A"

The molecular classification of endometrial cancer developed by The Cancer Genome Atlas project (TCGA, 2013) is currently actively used in gynecological oncology. According to it, endometrial carcinoma is divided into four molecular subtypes: -mutated, MMR deficient (dMMR), -aberrant and unspecified. Endometrial cancer samples belonging to the dMMR and -mutant types are characterized by specific genetic profiles reflecting the hyper- and ultramutant phenotypes of the tumor.

View Article and Find Full Text PDF
Article Synopsis
  • UV crosslinking with mass spectrometry (XL-MS) helps identify proteins that bind to RNA and DNA, revealing their specific domains and amino acids.
  • The study introduces NuXL, a search engine designed to efficiently analyze nucleotide-protein crosslinks at a detailed amino acid level, enhancing the understanding of protein interactions.
  • This approach increases crosslinked protein yield significantly, providing valuable insights into the structural features and binding properties of over 1500 nucleic acid-binding proteins, including transcriptional regulators.
View Article and Find Full Text PDF

Neuromorphic systems are typically based on nanoscale electronic devices, but nature relies on ions for energy-efficient information processing. Nanofluidic memristive devices could thus potentially be used to construct electrolytic computers that mimic the brain down to its basic principles of operation. Here we report a nanofluidic device that is designed for circuit-scale in-memory processing.

View Article and Find Full Text PDF

In protein-RNA cross-linking mass spectrometry, UV or chemical cross-linking introduces stable bonds between amino acids and nucleic acids in protein-RNA complexes that are then analyzed and detected in mass spectra. This analytical tool delivers valuable information about RNA-protein interactions and RNA docking sites in proteins, both in vitro and in vivo. The identification of cross-linked peptides with oligonucleotides of different length leads to a combinatorial increase in search space.

View Article and Find Full Text PDF

The regulation of thymocyte development by RNA-binding proteins (RBPs) is largely unexplored. We identify 642 RBPs in the thymus and focus on Arpp21, which shows selective and dynamic expression in early thymocytes. Arpp21 is downregulated in response to T cell receptor (TCR) and Ca signals.

View Article and Find Full Text PDF

During transcription-coupled DNA repair (TCR), RNA polymerase II (Pol II) transitions from a transcriptionally active state to an arrested state that allows for removal of DNA lesions. This transition requires site-specific ubiquitylation of Pol II by the CRL4 ubiquitin ligase, a process that is facilitated by ELOF1 in an unknown way. Using cryogenic electron microscopy, biochemical assays and cell biology approaches, we found that ELOF1 serves as an adaptor to stably position UVSSA and CRL4 on arrested Pol II, leading to ligase neddylation and activation of Pol II ubiquitylation.

View Article and Find Full Text PDF

Even though Bacillus subtilis is one of the most studied organisms, no function has been identified for about 20% of its proteins. Among these unknown proteins are several RNA- and ribosome-binding proteins suggesting that they exert functions in cellular information processing. In this work, we have investigated the RNA-binding protein YlxR.

View Article and Find Full Text PDF

Nature provides a wide range of self-assembled structures from the nanoscale to the macroscale. Under the right thermodynamic conditions and with the appropriate material supply, structures like stalactites, icicles, and corals can grow. However, the natural growth process is time-consuming.

View Article and Find Full Text PDF

Activating signal co-integrator 1 complex (ASCC) subunit 3 (ASCC3) supports diverse genome maintenance and gene expression processes, and contains tandem Ski2-like NTPase/helicase cassettes crucial for these functions. Presently, the molecular mechanisms underlying ASCC3 helicase activity and regulation remain unresolved. We present cryogenic electron microscopy, DNA-protein cross-linking/mass spectrometry as well as in vitro and cellular functional analyses of the ASCC3-TRIP4 sub-module of ASCC.

View Article and Find Full Text PDF

Nanopores in two-dimensional (2D) membranes hold immense potential in single-molecule sensing, osmotic power generation, and information storage. Recent advances in 2D nanopores, especially on single-layer MoS, focus on the scalable growth and manufacturing of nanopore devices. However, there still remains a bottleneck in controlling the nanopore stability in atomically thin membranes.

View Article and Find Full Text PDF

Transcription-coupled DNA repair removes bulky DNA lesions from the genome and protects cells against ultraviolet (UV) irradiation. Transcription-coupled DNA repair begins when RNA polymerase II (Pol II) stalls at a DNA lesion and recruits the Cockayne syndrome protein CSB, the E3 ubiquitin ligase, CRL4 and UV-stimulated scaffold protein A (UVSSA). Here we provide five high-resolution structures of Pol II transcription complexes containing human transcription-coupled DNA repair factors and the elongation factors PAF1 complex (PAF) and SPT6.

View Article and Find Full Text PDF

Nanopores are both a tool to study single-molecule biophysics and nanoscale ion transport, but also a promising material for desalination or osmotic power generation. Understanding the physics underlying ion transport through nano-sized pores allows better design of porous membrane materials. Material surfaces can present hydrophobicity, a property which can make them prone to formation of surface nanobubbles.

View Article and Find Full Text PDF

Nanofluidics encompasses a wide range of advanced approaches to study charge and mass transport at the nanoscale. Modern technologies allow us to develop and improve artificial nanofluidic platforms that confine ions in a way similar to single-ion channels in living cells. Therefore, nanofluidic platforms show great potential to act as a test field for theoretical models.

View Article and Find Full Text PDF

Protein-DNA interactions are key to the functionality and stability of the genome. Identification and mapping of protein-DNA interaction interfaces and sites is crucial for understanding DNA-dependent processes. Here, we present a workflow that allows mass spectrometric (MS) identification of proteins in direct contact with DNA in reconstituted and native chromatin after cross-linking by ultraviolet (UV) light.

View Article and Find Full Text PDF

Nanopores in solid state membranes are a tool able to probe nanofluidic phenomena or can act as a single molecular sensor. They also have diverse applications in filtration, desalination, or osmotic power generation. Many of these applications involve chemical, or hydrostatic pressure differences which act on both the supporting membrane, and the ion transport through the pore.

View Article and Find Full Text PDF

Introduction Despite all the advances in medicine and attempts to delay and prevent amputations, the number of amputations remains high. The state of South Carolina has one of the highest rates of major limb amputation in the country, with Florence and neighboring counties particularly affected. Education level has been associated with an increased number of amputations and worse outcomes post-amputation.

View Article and Find Full Text PDF

In Eukaryotes, tRNAs, 5S RNA and U6 RNA are transcribed by RNA polymerase (Pol) III. Human Pol III is composed of 17 subunits. Three specific Pol III subunits form a stable ternary subcomplex (RPC62-RPC39-RPC32α/β) being involved in pre-initiation complex formation.

View Article and Find Full Text PDF

Fluorescent nanoparticles with optically robust luminescence are imperative to applications in imaging and labeling. Here we demonstrate that hexagonal boron nitride (hBN) nanoparticles can be reliably produced using a scalable cryogenic exfoliation technique with sizes below 10 nm. The particles exhibit bright fluorescence generated by color centers that act as atomic-size quantum emitters.

View Article and Find Full Text PDF

Nucleotide excision repair (NER) is the major DNA repair pathway that removes UV-induced and bulky DNA lesions. There is currently no structure of NER intermediates, which form around the large multisubunit transcription factor IIH (TFIIH). Here we report the cryo-EM structure of an NER intermediate containing TFIIH and the NER factor XPA.

View Article and Find Full Text PDF

In human mitochondria, transcription termination events at a G-quadruplex region near the replication origin are thought to drive replication of mtDNA by generation of an RNA primer. This process is suppressed by a key regulator of mtDNA-the transcription factor TEFM. We determined the structure of an anti-termination complex in which TEFM is bound to transcribing mtRNAP.

View Article and Find Full Text PDF

Amino acid substitutions: Arg167His, Arg167Gly and Lys168Glu, located in a consensus actin-binding site of the striated muscle tropomyosin Tpm1.1 (TM), were used to investigate mechanisms of the thin filament regulation. The azimuthal movement of TM strands on the actin filament and the responses of the myosin heads and actin subunits during the ATPase cycle were studied using fluorescence polarization of muscle fibres.

View Article and Find Full Text PDF

Modern mass spectrometry setups used in today's proteomics studies generate vast amounts of raw data, calling for highly efficient data processing and analysis tools. Software for analyzing these data is either monolithic (easy to use, but sometimes too rigid) or workflow-driven (easy to customize, but sometimes complex). Thermo Proteome Discoverer (PD) is a powerful software for workflow-driven data analysis in proteomics which, in our eyes, achieves a good trade-off between flexibility and usability.

View Article and Find Full Text PDF

Histone H3 trimethylation of lysine 9 (H3K9me3) and proteins of the heterochromatin protein 1 (HP1) family are hallmarks of heterochromatin, a state of compacted DNA essential for genome stability and long-term transcriptional silencing. The mechanisms by which H3K9me3 and HP1 contribute to chromatin condensation have been speculative and controversial. Here we demonstrate that human HP1β is a prototypic HP1 protein exemplifying most basal chromatin binding and effects.

View Article and Find Full Text PDF