A critical feature of neural networks is that they balance excitation and inhibition to prevent pathological dysfunction. How this is achieved is largely unknown, although deficits in the balance contribute to many neurological disorders. We show here that a microRNA (miR-101) is a key orchestrator of this essential feature, shaping the developing network to constrain excitation in the adult.
View Article and Find Full Text PDFEndoplasmic reticulum (ER) stress has been implicated as an initiator or contributing factor in neurodegenerative diseases. The mechanisms that lead to ER stress and whereby ER stress contributes to the degenerative cascades remain unclear but their understanding is critical to devising effective therapies. Here we show that knockdown of Herp (Homocysteine-inducible ER stress protein), an ER stress-inducible protein with an ubiquitin-like (UBL) domain, aggravates ER stress-mediated cell death induced by mutant α-synuclein (αSyn) that causes an inherited form of Parkinson's disease (PD).
View Article and Find Full Text PDFChronic intake of nicotine can impair hippocampal plasticity, but the underlying mechanism is poorly understood. Here, we demonstrate that chronic nicotine administration in adult rats inactivates the cyclic AMP-response element binding protein (CREB), a transcription factor that regulates neurogenesis and other plasticity-related processes necessary for learning and memory. Consequently, we showed that impaired CREB signaling is associated with a significant decline in the production of new neurons in the dentate gyrus.
View Article and Find Full Text PDFThe Notch signaling pathway plays an essential role in the regulation of cell specification by controlling differentiation, proliferation, and apoptosis. Numb is an intrinsic regulator of the Notch pathway and exists in four alternative splice variants that differ in the length of their phosphotyrosine-binding domain (PTB) and proline-rich region domains. The physiological relevance of the existence of the Numb splice variants and their exact regulation are still poorly understood.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) is a key organelle regulating intracellular Ca(2+) homeostasis. Oxidants and mitochondria-derived free radicals can target ER-based Ca(2+) regulatory proteins and cause uncontrolled Ca(2+) release that may contribute to protracted ER stress and apoptosis. Several ER stress proteins have been suggested to counteract the deregulation of ER Ca(2+) homeostasis and ER stress.
View Article and Find Full Text PDF