Publications by authors named "Cherine Bechara"

Chemokine stimulation of atypical chemokine receptor 3 (ACKR3) does not activate G proteins but recruits arrestins. It is a chemokine scavenger that indirectly influences responses by restricting the availability of CXCL12, an agonist shared with the canonical receptor CXCR4. ACKR3 is upregulated in numerous disorders.

View Article and Find Full Text PDF
Article Synopsis
  • Atypical Chemokine Receptor 3 (ACKR3) is a G protein-coupled receptor that does not activate G proteins, and its activation mechanism is not well understood.
  • Researchers used advanced techniques like mass spectrometry and molecular dynamics simulations to investigate how different ligands interact with ACKR3.
  • The study revealed that certain structural changes within the receptor, particularly in specific helices and loops, dictate its activation or inhibition, and identified binding sites that help explain its unique dynamic characteristics.
View Article and Find Full Text PDF

The TOPOVIL complex catalyzes the formation of DNA double strand breaks (DSB) that initiate meiotic homologous recombination, an essential step for chromosome segregation and genetic diversity during gamete production. TOPOVIL is composed of two subunits (SPO11 and TOPOVIBL) and is evolutionarily related to the archaeal TopoVI topoisomerase complex. SPO11 is the TopoVIA subunit orthologue and carries the DSB formation catalytic activity.

View Article and Find Full Text PDF

The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that mediates a broad spectrum of (patho)physiological processes in response to numerous substances including pollutants, natural products and metabolites. However, the scarcity of structural data precludes understanding of how AHR is activated by such diverse compounds. Our 2.

View Article and Find Full Text PDF

(SA) leukocidin ED (LukED) belongs to a family of bicomponent pore forming toxins that play important roles in SA immune evasion and nutrient acquisition. LukED targets specific G protein-coupled chemokine receptors to lyse human erythrocytes (red blood cells) and leukocytes (white blood cells). The first recognition step of receptors is critical for specific cell targeting and lysis.

View Article and Find Full Text PDF

Sphingolipid metabolism is tightly controlled by enzymes to regulate essential processes in human physiology. The central metabolite is ceramide, a pro-apoptotic lipid catabolized by ceramidase enzymes to produce pro-proliferative sphingosine-1-phosphate. Alkaline ceramidases are transmembrane enzymes that recently attracted attention for drug development in fatty liver diseases.

View Article and Find Full Text PDF

Atypical chemokine receptor 1 (ACKR1) is a G protein-coupled receptor (GPCR) targeted by bicomponent pore-forming leukotoxins to promote bacterial growth and immune evasion. Here, we have developed an integrative molecular pharmacology and structural biology approach in order to characterize the effect of leukotoxins HlgA and HlgB on ACKR1 structure and function. Interestingly, using cell-based assays and native mass spectrometry, we found that both components HlgA and HlgB compete with endogenous chemokines through a direct binding with the extracellular domain of ACKR1.

View Article and Find Full Text PDF

Comprehensive characterization of physicochemical properties of monoclonal antibodies (mAbs) is a critical process to ensure their quality, efficacy, and safety. For this purpose, mAb analysis at different levels (bottom-up, middle-up) is a common approach that includes rather complex multistep sample preparation (reduction, digestion). To ensure high analysis performance, the development of fully integrated methodologies is highly valuable.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are considered as potential therapeutic sources of future antibiotics because of their broad-spectrum activities and alternative mechanisms of action compared to conventional antibiotics. Although AMPs present considerable advantages over conventional antibiotics, their clinical and commercial development still have some limitations, because of their potential toxicity, susceptibility to proteases, and high cost of production. To overcome these drawbacks, the use of peptides mimics is anticipated to avoid the proteolysis, while the identification of minimalist peptide sequences retaining antimicrobial activities could bring a solution for the cost issue.

View Article and Find Full Text PDF

Mass spectrometry (MS) provides an impressive array of information about the structure, function and interactions of proteins. In recent years, many new developments have been in the field of native MS and these exemplify a new coming of age of this field. In this mini review, we connect the latest methodological and instrumental developments in native MS to the new insights these have enabled.

View Article and Find Full Text PDF

In this study, we have investigated the lipids surrounding AqpZ, and the effects of a destabilizing mutation WA (Schmidt and Sturgis, 2017) on lipid protein interactions. In a first approach, we used Styrene Maleic Acid copolymer to prepare AqpZ containing nanodiscs, and these were analyzed for their lipid content, investigating both the lipid head-group and acyl-chain compositions. These results were complemented by native mass spectrometry of purified AqpZ in the presence of lipids, to give insights of variations in lipid binding at the surface of AqpZ.

View Article and Find Full Text PDF

The phylum Apicomplexa encompasses deadly pathogens such as malaria and Cryptosporidium. Apicomplexa cell division is mechanistically divergent from that of their mammalian host, potentially representing an attractive source of drug targets. Depending on the species, apicomplexan parasites can modulate the output of cell division, producing two to thousands of daughter cells at once.

View Article and Find Full Text PDF

With the recent success in determining membrane protein structures, further detailed understanding of the identity and function of the bound lipidome is essential. Using an approach that combines high-energy native mass spectrometry (HE-nMS) and solution-phase lipid profiling, this protocol can be used to determine the identity of the endogenous lipids that directly interact with a protein. Furthermore, this method can identify systems in which such lipid binding has a major role in regulating the oligomeric assembly of membrane proteins.

View Article and Find Full Text PDF

Adiponectin receptors (ADIPORs) are integral membrane proteins that control glucose and lipid metabolism by mediating, at least in part, a cellular ceramidase activity that catalyses the hydrolysis of ceramide to produce sphingosine and a free fatty acid (FFA). The crystal structures of the two receptor subtypes, ADIPOR1 and ADIPOR2, show a similar overall seven-transmembrane-domain architecture with large unoccupied cavities and a zinc binding site within the seven transmembrane domain. However, the molecular mechanisms by which ADIPORs function are not known.

View Article and Find Full Text PDF

Small molecules are known to stabilize membrane proteins and to modulate their function and oligomeric state, but such interactions are often hard to precisely define. Here we develop and apply a high-resolution, Orbitrap mass spectrometry-based method for analyzing intact membrane protein-ligand complexes. Using this platform, we resolve the complexity of multiple binding events, quantify small molecule binding and reveal selectivity for endogenous lipids that differ only in acyl chain length.

View Article and Find Full Text PDF

Studying the mechanisms of entry of cell-penetrating peptides (CPPs) requires reliable methods to measure their cellular uptake efficiency, monitor their metabolic stability, and identify their intracellular localization. We describe here a protocol based on the direct detection of peptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), which allows the absolute quantification of the intact internalized species and the analysis of their intracellular degradation. This protocol can be easily applied to the simultaneous quantification of different species, for example mixtures of CPPs.

View Article and Find Full Text PDF

The realization that the lipid environment is crucial for maintaining the structure and function of membrane proteins prompts new methods to understand lipid interactions. One such method, mass spectrometry, is emerging with the potential to monitor different modes of lipid binding to membrane protein complexes. Initial studies monitored the addition of lipids and deduced the kinetic and thermodynamic effects of lipid binding to proteins.

View Article and Find Full Text PDF

Lipids are critical components of membranes that could affect the properties of membrane proteins, yet the precise compositions of lipids surrounding membrane-embedded protein complexes is often difficult to discern. Here we report that, for the heterodimeric ABC transporter TmrAB, the extent of delipidation can be controlled by timed exposure to detergent. We subsequently characterize the cohort of endogenous lipids that are extracted in contact with the membrane protein complex, and show that with prolonged delipidation the number of neutral lipids is reduced in favour of their negatively charged counterparts.

View Article and Find Full Text PDF

The DsbA:DsbB redox machinery catalyzes disulfide bond formation in secreted proteins and is required for bacterial virulence factor assembly. Both enzymes have been identified as targets for antivirulence drugs. Here, we report synthetic analogues of ubiquinone (dimedone derivatives) that inhibit disulfide bond formation (IC50∼1 μM) catalyzed by E.

View Article and Find Full Text PDF

Homotypic death domain (DD)-DD interactions are important in the assembly of oligomeric signaling complexes such as the PIDDosome that acts as a platform for activation of caspase-2-dependent apoptotic signaling. The structure of the PIDDosome core complex exhibits an asymmetric three-layered arrangement containing five PIDD-DDs in one layer, five RAIDD-DDs in a second layer and an additional two RAIDD-DDs. We addressed complex formation between PIDD-DD and RAIDD-DD in solution using heteronuclear nuclear magnetic resonance (NMR) spectroscopy, nanoflow electrospray ionization mass spectrometry and size-exclusion chromatography with multi-angle light scattering.

View Article and Find Full Text PDF

Among non-invasive cell delivery strategies, cell-penetrating peptide (CPP) vectors represent interesting new tools. To get fundamental knowledge about the still debated internalisation mechanisms of these peptides, we modified the membrane content of cells, typically by hydrolysis of sphingomyelin or depletion of cholesterol from the membrane outer leaflet. We quantified and visualised the effect of these viable cell surface treatments on the internalisation efficiency of different CPPs, among which the most studied Tat, R9, penetratin and analogues, that all carry the N-terminal biotin-Gly4 tag cargo.

View Article and Find Full Text PDF

Twenty years ago, the discovery of peptides able to cross cellular membranes launched a novel field in molecular delivery based on these non-invasive vectors, most commonly called cell-penetrating peptides (CPPs) or protein transduction domains (PTDs). These peptides were shown to efficiently transport various biologically active molecules inside living cells, and thus are considered promising devices for medical and biotechnological developments. Moreover, CPPs emerged as potential tools to study the prime mechanisms of cellular entry across the plasma membrane.

View Article and Find Full Text PDF

Since the initial evidence that antennapedia homeobox can cross cell membranes and internalize into cells, numerous peptides with similar translocation properties have been described. These peptides are referred to as cell-penetrating peptides (CPPs) or protein-transduction domains (PTDs). Reviews on reported CPP sequences have been recently published, together with reviews on their mechanisms of internalization.

View Article and Find Full Text PDF

Cell penetrating peptides (CPPs) belong to the large family of membrane active peptides that comprises antimicrobial and viral fusion peptides with whom they share many properties. CPPs have been increasingly used to transport a wide range of molecules and nanoparticles inside cells. Despite their recognized potential transporting properties, their mode of action is far from being understood and has been a matter of debate.

View Article and Find Full Text PDF

Deciphering the structural requirements and mechanisms for internalization of cell-penetrating peptides (CPPs) is required to improve their delivery efficiency. Herein, a unique role of tryptophan (Trp) residues in the interaction and structuring of cationic CPP sequences with glycosaminoglycans (GAGs) has been characterized, in relation with cell internalization. Using isothermal titration calorimetry, circular dichroism, NMR, mass spectrometry, and phase-contrast microscopy, we compared the interaction of 7 basic CPPs with 5 classes of GAGs.

View Article and Find Full Text PDF