Publications by authors named "Cherif Boudaba"

Magnocellular neurons of the supraoptic nucleus (SON) and paraventricular nucleus (PVN) display bursting activity that is synchronized under certain conditions. They receive excitatory synaptic inputs from intrahypothalamic glutamate circuits, some of which are activated by norepinephrine. Ascending noradrenergic afferents and intrahypothalamic glutamate circuits may be responsible for the generation of synchronous bursting among oxytocin neurons and/or asynchronous bursting among vasopressin neurons located in the bilateral supraoptic and paraventricular nuclei.

View Article and Find Full Text PDF

Exogenous cannabinoids have been shown to significantly alter neuroendocrine output, presaging the emergence of endogenous cannabinoids as important signalling molecules in the neuroendocrine control of homeostatic and reproductive functions, including the stress response, energy metabolism and gonadal regulation. We showed recently that magnocellular and parvocellular neuroendocrine cells of the hypothalamic paraventricular nucleus and supraoptic nucleus (SON) respond to glucocorticoids by releasing endocannabinoids as retrograde messengers to modulate the synaptic release of glutamate. Here we show directly for the first time that both of the main endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), are released in an activity-dependent fashion from the soma/dendrites of SON magnocellular neurones and suppress synaptic glutamate release and postsynaptic spiking.

View Article and Find Full Text PDF

Chronic dehydration induces structural changes in the hypothalamic supraoptic nucleus (SON), including increased glutamate synapses and retraction of astroglial processes. We performed whole-cell recordings in acute hypothalamic slices to determine whether these changes increase tonic activation of presynaptic metabotropic glutamate receptors (mGluRs) by increasing ambient glutamate in the SON. Activation of presynaptic group III mGluRs caused a decrease in the frequency of miniature excitatory postsynaptic currents (mEPSCs) in SON neurones that was significantly attenuated in slices from dehydrated rats (-27.

View Article and Find Full Text PDF

The hypothalamic-neurohypophysial system undergoes dramatic morphological plasticity in response to physiological activation during parturition/lactation and dehydration, including somatic swelling, decreased glial coverage and increased synaptic innervation of the magnocellular neuroendocrine cells. Recent in-vitro electrophysiological studies in hypothalamic slices have demonstrated that coordinate changes in the synaptic physiology of the magnocellular neurons also occur under these conditions. Thus, the synaptic release of glutamate and GABA onto magnocellular neurons is increased during lactation and with chronic dehydration, and changes in postsynaptic glutamate and GABAA receptor expression lead to alterations of the functional properties of the glutamate and GABAA receptor channels.

View Article and Find Full Text PDF