Macrophage apoptosis is a key contributor to the progression of atherosclerosis. Cyclophilin A, a monocyte secretory protein associated with the initiation of atherosclerosis has an inherent nuclease activity. This study reports the mechanism by which cyclophilin A causes apoptosis of macrophages and accelerates the progression of atherosclerosis.
View Article and Find Full Text PDFGrowing evidence implicates cyclophilin A secreted by vascular wall cells and monocytes as a key mediator in atherosclerosis. Cyclophilin A in addition to its proliferative effects, during hyperglycemic conditions, increases lipid uptake in macrophages by increasing scavenger receptors on the cell's surface. It also promotes macrophage migration across endothelial cells and conversion of macrophages into foam cells.
View Article and Find Full Text PDFBackground: Vascular disease in diabetes is initiated by monocyte adhesion to vascular endothelium, transmigration and formation of foam cells. Increasing clinical evidence supports a role for the secretory protein, cyclophilin A in diabetic vascular disease. The means by which cyclophilin A contributes to vascular lesion development in diabetes is however largely unknown.
View Article and Find Full Text PDFBackground: The endocardial endothelium that lines the inner cavity of the heart is distinct from the microvascular endothelial cells and modulates cardiac muscle performance in a manner similar to the vascular endothelial modulation of vascular structure and vasomotor tone. Although the modulatory effects of endocardial endothelium (EE) on cardiomyocytes are firmly established, the regulatory effects of endocardial endothelium on the cardiac interstitium and its cellular components remain ill defined.
Methods And Results: We investigated whether the stimulatory effect of EE on cardiac fibroblasts would be altered when EECs are activated by the cytokine tumor necrosis factor-alpha (TNF-alpha) or the endotoxin bacterial lipopolysaccharide (LPS).