Publications by authors named "Cheol-Young Choi"

Cadmium (Cd) is a highly toxic substance in the aquatic ecosystem, which can represent a high risk to fish. Fish are exposed to heavy metals through waterborne and dietary pathways, some of which are absorbed by the body and can accumulate in specific tissues without being eliminated. The accumulation varies depending on several factors such as dose, exposure route, exposure time, metal types, and biological status of the fish, and environmental parameters such as DO, salinity, pH, and metal speciation.

View Article and Find Full Text PDF

Starry flounders (Platichthys stellatus, mean weight 105 ± 14 g, mean total length 20.2 ± 0.7 cm) were exposed to hexavalent chromium concentrations of 0, 5, 10, 20, 40, and 80 mg Cr/L for 96 hours.

View Article and Find Full Text PDF
Article Synopsis
  • Cadmium (Cd) is a harmful trace element that negatively impacts fish health, particularly through changes in their blood and plasma parameters.
  • Key hematological parameters like red blood cell count and hemoglobin concentration are sensitive indicators of Cd toxicity, often leading to anemia and reduced oxygen delivery in fish.
  • The review highlights various plasma biochemical markers that reflect organ health and metabolic function, while also exploring potential strategies, like dietary antioxidants, to alleviate the toxic effects of Cd exposure.
View Article and Find Full Text PDF

Water temperature is an abiotic factor influencing fish metabolism and physiological responses. As poikilothermic creatures, fish are notable sensitivity to fluctuations in water temperature, which also significantly influences intestinal microbial proliferation. This study aimed to investigate the impact of both low (8 °C) and high (28 °C) water temperatures on oxidative stress and the intestinal microbiota of Chromis notata, a species that has recently migrated northward owing to changes in sea water temperature.

View Article and Find Full Text PDF

Global warming significantly impacts aquatic ecosystems, with changes in the salt environment negatively affecting the physiological responses of fish. We investigated the impact of hyposalinity on the physiological responses and intestinal microbiota of Sebastes schlegelii under the context of increased freshwater influx due to climate change. We focused on the osmoregulatory capacity, oxidative stress responses, and alterations in the intestinal microbiome of S.

View Article and Find Full Text PDF

High ocean temperatures caused by global warming induce oxidative stress in aquatic organisms. Melatonin treatment and irradiation using red light-emitting diodes (LEDs) have been reported to reduce oxidative stress in a few aquatic organisms. However, the effects of red LED irradiation and melatonin injection on the antioxidant capacity and degree of apoptosis in abalones, which are nocturnal organisms, have not yet been reported.

View Article and Find Full Text PDF

The effects of red light-emitting diode (LED) light irradiation (630 nm, 0.5 W/m) and melatonin (10 and 10M) on oxidative stress and physiological responses in abalones exposed to high temperatures (28°C) were investigated. Changes in messenger RNA (mRNA) expressions of melatonin receptor (MT-R), heat shock protein 70 (HSP70), and antioxidant enzymes, as well as alterations in HO levels in the hemolymph, were examined.

View Article and Find Full Text PDF

SPARC is an extracellular Ca-binding, secreted glycoprotein that plays a dynamic role in the growth and development of organisms. This study aimed to describe the isolation, characterization, and expression analysis of HdhSPARC in Pacific abalone (Haliotis discus hannai) to infer its potential functional role. The isolated HdhSPARC was 1633 bp long, encoding a polypeptide of 284 amino acid residues.

View Article and Find Full Text PDF

Microplastics (MP) are harmful, causing stress in aquatic species and acting as carriers of hydrophobicity. In aquatic environments, benzo[α]pyrene (BaP) is an endocrine-disrupting chemical that accumulates in the body and causes toxic reactions in living organisms. We investigated the effects of single and combined microbead (MB) and BaP environments on goldfish antioxidant response and apoptosis.

View Article and Find Full Text PDF

Along with environmental pollution caused by rapid economic development and industrialization, plastic waste is emerging as a global concern in relation to marine ecosystems and human health. Among the microplastics, fiber-type microfibers (MF) and bisphenol A (BPA), which are widely used as plasticizers, do not decompose well in the ocean, and tend to accumulate in organisms, generating an increased oxidative stress response. This study investigated the abalones' antioxidant and cell death responses following exposure to the environmental pollutants MF and BPA.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigated the effects of polyamide (PA) exposure on juvenile crucian carp, focusing on neurotoxicity, stress responses, and immune system effects.
  • Crucian carp were exposed to various concentrations of PA for two weeks, showing significant inhibition of acetylcholinesterase (AChE) in key organs and increased levels of stress indicators like cortisol and HSP70.
  • The findings highlight the toxic impact of microplastics, revealing adverse effects on the fish's neurochemical and immune functions.
View Article and Find Full Text PDF

We confirmed antioxidant-related gene expression, bioaccumulation, and cell damage following exposure to various microplastics in vivo and in vitro in the goldfish Carassius auratus. Exposure of C. auratus to a 500 µm fiber-type microplastic environment (MF; 10 and 100 fibers/L) and two sizes (0.

View Article and Find Full Text PDF

Cadmium (Cd) in aquatic environments can cause environmental toxicity to fish and induce oxidative stress owing to an excessive production of reactive oxygen species in fish bodies. Fish have developed various antioxidant systems to protect themselves from reactive oxygen species; thus, a change in antioxidant responses in fish can be a criterion for evaluating oxidative stress resulting from Cd exposure. Because Cd exposure may be recognized as an exogenous substance by a fish body, it may lead to the stimulation or suppression of its immune system.

View Article and Find Full Text PDF

Microplastics, owing to their hydrophobic properties and the various chemicals used in their production, can act as carriers of persistent organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs). In this study, we exposed the goldfish Carassius auratus to benzo[α]pyrene (BaP, 10 μg/L), a representative PAH, and micro-polystyrene plastic (MP; 10 and 100 beads/L), of size 1.0 μm, as a single or complex environmental stressor, and evaluated the stress response and the resulting DNA damage.

View Article and Find Full Text PDF

This review describes the applicability of biofloc technology (BFT) to future aquaculture technologies. BFT is considered an innovative alternative for solving the problems of traditional aquaculture (for example, environmental pollution, high maintenance costs, and low productivity). Extensive research is being conducted to apply BFT to breed and raise many aquatic animal species.

View Article and Find Full Text PDF

Ocean warming and acidification can induce oxidative stress in marine species, resulting in cellular damage and apoptosis. However, the effects of pH and water temperature conditions on oxidative stress and apoptosis in disk abalone are poorly understood. This study investigated, for the first time, the effects of different water temperatures (15, 20, and 25 °C) and pH levels (7.

View Article and Find Full Text PDF

The purpose of this study was to evaluate the toxic effects of polyethylene microplastics (PE-MPs) by measuring the bioaccumulation, hematological parameters, and antioxidant responses in crucian carp (Carassius Carassius) exposed to waterborne 22-71 μm PE-MPs. C. carassius (mean weight, 24.

View Article and Find Full Text PDF

Zinc (Zn), a heavy metal, is an essential element in fish; however, exposure to high concentrations causes oxidative stress. Water hardness reduces oxidative stress reactions caused by heavy metals. To confirm the effect of water hardness on oxidative stress caused by Zn, goldfish were exposed to various Zn concentrations (1.

View Article and Find Full Text PDF

Microplastics not only accumulate in the bodies of fishes and cause damage to the organs, but also cause many other problems, such as reduced reproductive capacity, by acting directly or indirectly on the hypothalamus-pituitary-gonad axis (HPG axis). In this study, we investigated the changes in HPG axis-related genes in male medaka (Oryzias latipes) exposed to fiber-type microplastics. We confirmed the progression of vitellogenesis, a sign of endocrine disruption, in male fish.

View Article and Find Full Text PDF

Fiber-type microplastics are major anthropogenic contaminants of marine environments. They are released mainly during cloth washing and are discharged from wastewater treatment plants into aquatic environments. This study aimed to evaluate whether microfiber exposure causes oxidative stress and cell damage in medaka (Oryzias latipes Temminck and Schlegel 1846).

View Article and Find Full Text PDF

Growth factors are mostly secreted proteins that play key roles in an organism's biophysical processes through binding to specific receptors on the cell surface. The mollusk-like growth factor () is a novel cell signaling protein in the adenosine deaminase-related growth factor (ADGF) subfamily. In this study, the gene was cloned and characterized from the digestive gland tissue of Pacific abalone and designated as .

View Article and Find Full Text PDF

The use of fossil fuels by anthropogenic activities causes ocean acidification and warming, and these changes in the marine environment can negatively affect the metabolism, growth, and survival of fish. In the present study, we evaluated the ability of olive flounder Paralichthys olivaceus to cope with future marine environmental changes by investigating the oxidative stress (cortisol, HSP70), antioxidant enzyme (superoxide dismutase; SOD, catalase; CAT) activity, and apoptosis (caspase-3) after exposure to control conditions (20 °C and pH 8.1), warming (30 °C) and acidification (pH 7.

View Article and Find Full Text PDF