Subterranean termites build complex underground tunnel networks to efficiently gather food. Empirical observations indicate specific individuals are dedicated to tunneling, rarely interchanging tasks. However, considering the limited tunneling energy of termite populations, it is reasonable to expect regular task shifts between fatigued and rested individuals to maintain continuous tunneling and optimize foraging.
View Article and Find Full Text PDFThis study explores the food transport efficiency (E) in a termite tunnel consisting of a main tunnel and a 2-segment loop tunnel through a model simulation. Simulated termites navigate between the main and loop tunnels through branching nodes (a, b, c, d) with associated probabilities (P1, P2, P3, P4). The loop tunnel locations (δ) are considered: near the nest (δ = 1), at the center of the main tunnel (δ = 2), and close to the food site (δ = 3).
View Article and Find Full Text PDFAvian eggshells exhibit excellent antimicrobial properties. In this study, we conducted simulation experiments to explore the defense mechanisms of eggshell membranes with regards to their physical features. We developed a mathematical model for the movement of microorganisms and estimated their penetration ratio into eggshell membranes based on several factors, including membrane thickness, microbial size, directional drift, and attachment probability to membrane fibers.
View Article and Find Full Text PDFSubterranean termites construct a network of tunnels beneath the ground, comprising a main tunnel and branch tunnels. While termites do not construct tunnels that turn back in a "U" shape, the intersection of main and branch tunnels often forms closed curved structures (a loop). The loop structure can have either a positive or negative effect on the transport efficiency of termites in food transportation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2024
Among the various existing layered compounds, silicon diselenide (SiSe) possesses diverse chemical and physical properties, owing to its large interlayer spacing and interesting atomic arrangements. Despite the unique properties of layered SiSe, it has not yet been used in energy applications. Herein, we introduce the synthesis of layered SiSe through a facile solid-state synthetic route and demonstrate its versatility as a sulfide solid electrolyte (SE) additive for all-solid-state batteries (ASSBs) and as an anode material for Li-ion batteries (LIBs).
View Article and Find Full Text PDFThis study explores the food transport efficiency of termite using an individual-based model. Termites are believed to have evolved tunneling patterns that optimize food search and transport efficiency. However, few studies have investigated transport efficiency due to the difficulty of field observations.
View Article and Find Full Text PDFTermites are believed to have evolved in a way that optimizes their foraging efficiency, which involves both searching for food and transporting it efficiently. Although the search efficiency has been well-studied through tunnel pattern analysis, transport efficiency has received limited attention due to the challenges of directly observing behavior that is highly influenced by environmental conditions. In this study, we introduce an individual-based model to simulate transport behavior and examine transport efficiency (E) by considering the tunnel surface irregularities and curvature, which are critical environmental factors.
View Article and Find Full Text PDFOrg Biomol Chem
January 2023
The synthesis of unsymmetrical dithioacetals based on gold catalysis is described. Although many approaches to the preparation of symmetrical dithioacetals have been developed, the methods to access unsymmetrical ones remain limited. In this regard, we report a mild synthetic method with a broad substrate scope.
View Article and Find Full Text PDFOrg Biomol Chem
September 2022
The synthesis of benzothiophenes through electrosynthesis under oxidant- and metal-free conditions has been discovered. Electrolysis of symmetrical 2-alkenylaryl disulfides using an undivided cell leads to the formation of the corresponding benzothiophenes in good to moderate yields with good functional group tolerance. The usefulness of this methodology was further investigated with a scale-up experiment, which delivered a similar result to that of the small scale reaction.
View Article and Find Full Text PDFFour main anode types are generally considered as typical anodes for Li-ion batteries (LIBs): Li-metal, carbon-based, alloy-based, and oxide-based anodes. Although they exhibit satisfactory electrochemical performance as LIB anodes, they cannot simultaneously satisfy all key requirements for LIB anodes: high reversible capacity, high initial Coulombic efficiency (ICE), long cycle life, fast rate capability, structural stability, and no safety concerns. Here, we suggest Li-compound anodes as a promising class of high-performance LIB anodes.
View Article and Find Full Text PDFWe describe the electrochemical α-amidoalkylation of γ-lactams based on transition-metal-free cross-coupling via hydrogen atom transfer. The highly selective hydrogen atom transfer process allows for a broad substrate scope including both inter- and intramolecular reactions. Also, the construction of quaternary centers was realized by a double hydrogen atom transfer protocol to afford spirocycles.
View Article and Find Full Text PDFControl over chemo- and regioselectivity is a critical issue in the heterobiaryl synthesis C-H oxidative coupling. To address this challenge, a strategy to invert the normal polarity of indoles in the heterobiaryl coupling was developed. With -carboxyindoles as umpoled indoles, an exclusively -selective coupling with phenols has been realized, employing a Brønsted acid- or Cu(i)-catalyst (as low as 0.
View Article and Find Full Text PDFWe developed a proximity photo-crosslinking method () with a 4-azido--ethyl-1,8-naphthalimide (AzNP) moiety that can be converted to reactive aryl nitrene species using ambient blue light-emitting diode light. Using an AzNP-conjugated HaloTag ligand (VL1), blue light-induced photo-crosslinked products of various HaloTag-conjugated proteins of interest were detected in subcellular spaces in live cells. Chemical or heat stress-induced dynamic changes in the proteome were also detected, and photo-crosslinking in the mouse brain tissue was enabled.
View Article and Find Full Text PDFElectrocatalysts with dramatically enhanced water splitting efficiency, derived from controlled structures, phase transitions, functional activation, , have been developed recently. Herein, we report an observation of graphene-based self-healing, in which this functional activation is induced by a redox reaction. Specifically, graphene on stainless steel (SUS) switches between graphene (C-C) and graphene oxide (C-O) coordination via an electrical redox reaction to activate water splitting.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized by complex, multifactorial neuropathology, suggesting that small molecules targeting multiple neuropathological factors are likely required to successfully impact clinical progression. Acid sphingomyelinase (ASM) activation has been recognized as an important contributor to these neuropathological features in AD, leading to the concept of using ASM inhibitors for the treatment of this disorder. Here we report the identification of KARI 201, a direct ASM inhibitor evaluated for AD treatment.
View Article and Find Full Text PDFEntropy (Basel)
April 2021
Branch length similarity (BLS) entropy is defined in a network consisting of a single node and branches. In this study, we mapped the binary time-series signal to the circumference of the time circle so that the BLS entropy can be calculated for the binary time-series. We obtained the BLS entropy values for "1" signals on the time circle.
View Article and Find Full Text PDFSite-selective modification of oligonucleotides serves as an indispensable tool in many fields of research including research of fundamental biological processes, biotechnology, and nanotechnology. Here we report chemo- and regioselective modification of oligonucleotides based on rhodium(I)-carbene catalysis in a programmable fashion. Extensive screening identifies a rhodium(I)-catalyst that displays robust chemoselectivity toward base-unpaired guanosines in single and double-strand oligonucleotides with structurally complex secondary structures.
View Article and Find Full Text PDFDeveloping sensing approaches that can exploit visible light for the detection of low-concentration hydrogen at room temperatures has become increasingly important for the safe use of hydrogen in many applications. In this study, heterostructures composed of monolayer MoS and Pd nanoclusters (Pd/MoS) acting as photo- and hydrogen-sensitizers are successfully fabricated in a facile and scalable manner. The uniform deposition of morphologically isotropic Pd nanoclusters (11.
View Article and Find Full Text PDFEntropy (Basel)
September 2020
We propose a new measure () to quantify the degree of self-similarity of a shape using branch length similarity (BLS) entropy which is defined on a simple network consisting of a single node and its branches. To investigate the properties of this measure, we computed the values for 70 object groups (20 shapes in each group) in the MPEG-7 shape database and performed grouping on the values. With relatively high values, identical groups had visually similar shapes.
View Article and Find Full Text PDFThe synthesis of versatile scaffold indolopyrans based on C-C radical-radical cross-coupling under metal-free conditions is described. The reaction involving single electron transfer between coupling partners followed by cage collapse allows highly selective cross-coupling while employing only equimolar amounts of coupling partners. Moreover, the mechanistic manifold was expanded for the functionalization of enamines to give the stereoselective synthesis of 2,3-dihydrofurans.
View Article and Find Full Text PDFTaehan Yongsang Uihakhoe Chi
July 2020
A variety of medical devices have evolved throughout the years. Commonly used devices have typical radiological appearances which are familiar to radiologists. However, some new devices, as well as devices that are not commonly used, may be missed or misinterpreted by radiologists.
View Article and Find Full Text PDFUV-activated alkyne-alkene [2 + 2] cycloaddition has served as an important tool to access cyclobutenes. Although broadly adopted, the limitations with UV light as an energy source prompted us to explore an alternative method. Here we report alkyne-alkene [2 + 2] cycloaddition based on visible light photocatalysis allowing the synthesis of diverse cyclobutenes and 1,3-dienes via inter- and intramolecular reactions.
View Article and Find Full Text PDFSphingosine kinase1 (SphK1) is an acetyl-CoA dependent acetyltransferase which acts on cyclooxygenase2 (COX2) in neurons in a model of Alzheimer's disease (AD). However, the mechanism underlying this activity was unexplored. Here we show that N-acetyl sphingosine (N-AS) is first generated by acetyl-CoA and sphingosine through SphK1.
View Article and Find Full Text PDFOxidative [3+3] cycloadditions offer an efficient route for six-membered-ring formation. This approach has been realized based on an electrochemical oxidative coupling of indoles/enamines with active methylene compounds followed by tandem 6π-electrocyclization leading to the synthesis of dihydropyrano[4,3-b]indoles and 2,3-dihydrofurans. The radical-radical cross-coupling of the radical species generated by anodic oxidation combined with the cathodic generation of the base from O allows for mild reaction conditions for the synthesis of structurally complex heterocycles.
View Article and Find Full Text PDFTo design a high-performance sodium-ion battery anode, binary zinc phosphides (ZnP and ZnP) were synthesized by a facile solid-state heat treatment process, and their Na storage characteristics were evaluated. The Na reactivity of ZnP was better than that of ZnP. Therefore, a C-modified ZnP-based composite (ZnP-C) was fabricated to achieve better electrochemical performance.
View Article and Find Full Text PDF