Publications by authors named "Cheol Jin Lee"

Field electron emission characteristics of the carbon nanotube (CNT) film emitters were investigated according to densification conditions such as nitric acid, acetic acid, and salicylic acid. The emission performance of the CNT film emitters was strongly affected by the densification conditions. Salicylic acid exhibits the best field electron emission properties of the CNT film emitters, followed by nitric acid and acetic acid.

View Article and Find Full Text PDF

Textile electronics are ideal for novel electronic devices owing to their flexibility, light weight, and wearability. In this work, wearable organic field-effect transistors (OFETs) with all-graphene electrodes, fabricated using hot pressing, are described. First, highly conductive and flexible electrodes consisting of a cotton textile substrate and electrochemically exfoliated graphene (EEG) were prepared via hot pressing.

View Article and Find Full Text PDF

A cold cathode X-ray tube was fabricated using a carbon nanotube (CNT) field electron emitter made by a free-standing CNT film which is composed of a highly packed CNT network. A lot of CNT bundles with a sharp tip are vertically aligned at the edge of the thin CNT film with a length of 10 mm and a thickness of 7 μm. The cold cathode X-ray tube using the CNT field emitter presents an extremely high tube current density of 152 A/cm (corresponding to tube current of 106.

View Article and Find Full Text PDF

We demonstrate that using nanocomposite thin films consisting of semiconducting polymer, poly(3-hexylthiophene) (P3HT), and electrochemically exfoliated graphene (EEG) for the active channel layer of organic field-effect transistors (OFETs) improves both device performances and mechanical properties. The nanocomposite film was developed by directly blending P3HT solution with a dispersion of EEG at various weight proportions and simply transferring to an Si/SiO2 substrate by the solution floating method. The OFET based on P3HT/EEG nanocomposite film showed approximately twice higher field-effect mobility of 0.

View Article and Find Full Text PDF

The field emission properties of boron nitride nanotube (BNNT) field emitters according to vacuum pressure were demonstrated. During the short-term emission operation, the field emission behaviors were almost similar, regardless of the vacuum pressure, even though the turn-on electric field of the BNNT field emitter was slightly increased as the vacuum pressure increased. On the other hand, during the long-term emission operation, both the degradation and fluctuations of the emission current of the BNNT field emitters were dramatically increased as the vacuum pressure increased.

View Article and Find Full Text PDF

Owing to the extraordinary properties, organic micro/nanocrystals are important building blocks for future low-cost and high-performance organic electronic devices. However, integrated device application of the organic micro/nanocrystals is hampered by the difficulty in high-throughput, high-precision patterning of the micro/nanocrystals. In this study, the authors demonstrate, for the first time, a facile capillary-assisted alternating-electric field method for the large-scale assembling and patterning of both 0D and 1D organic crystals.

View Article and Find Full Text PDF

Carbon nanotube (CNT) paste emitters were fabricated using graphite nanopowder filler. The CNT paste emitters consist of CNTs as the emitting material, graphite nanopowder as the filler and a graphite rod as the cathode. Rather than metal or inorganic materials, graphite nanopowder was adapted as a filler material to make the CNT paste emitters.

View Article and Find Full Text PDF

Boron nitride nanotubes (BNNTs) have attracted considerable attention as a field emission material because of their high mechanical strength, high negative electron affinity, and high oxidation resistance. Nevertheless, the obtained field-emission properties of BNNTs have indicated poor emission performance, which is a very high turn-on electric field with a low emission current. We fabricated BNNT field emitters and investigated their field-emission properties.

View Article and Find Full Text PDF

We report a highly stable p-type doping for single walled carbon nanotubes using an electrochemical method. The Raman spectroscopy showed the upshift of the G-band when the applied potential increased. Furthermore, the carbon core level shifted as much as 0.

View Article and Find Full Text PDF

Molybdenum disulfide (MoS2) is an extremely intriguing material because of its unique electrical and optical properties. The preparation of large-area and high-quality MoS2 nanosheets is an important step in a wide range of applications. This study demonstrates that monolayer and few-layer MoS2 nanosheets can be obtained from electrochemical exfoliation of bulk MoS2 crystals.

View Article and Find Full Text PDF

The ultraviolet optical properties of semiconducting-enriched and metallic-enriched single-walled carbon nanotube (semi-enriched and m-enriched SWCNT) networks were studied using spectroscopic ellipsometry. According to calculated energy loss function, the energy loss peak assigned to the maximum intensity of π-plasmon energy was found to increase from 4.5 eV to 5.

View Article and Find Full Text PDF

We present an integration process to fabricate single-walled carbon nanotube (SWCNT) three-electrode systems on glass substrate for electrochemical biosensors. Key issues involve optimization of the SWCNT working electrode to achieve high sensitivity, developing an optimal Ag/AgCl reference electrode with good stability, and process development to integrate these electrodes. Multiple spray coatings of the SWCNT film on glass substrate enabled easier integration of the SWCNT film into an electrochemical three-electrode system.

View Article and Find Full Text PDF

Transferred multi-walled carbon nanotube (MWCNT)-modified platinum thin-film immunosensing electrode material was engineered on a glass substrate and fabricated a fully-integrated electrochemical three-electrode system for monitoring Legionella pneumophila. The transferred MWCNT film was treated with oxygen plasma to improve its electrochemical response and electrical conductivity. We voltammetrically characterized and optimized the electrochemical performance of the fabricated electrode for direct detection of Legionella pneumophila-specific peptidoglycan-associated lipoprotein (PAL) and maltose binding protein (MBP) peptidoglycan-associated lipoprotein (MBP-PAL) fusion.

View Article and Find Full Text PDF

Background: The administration of a single dose of propofol is reported to be effective in decreasing the incidence and severity of emergence agitation (EA) in children following sevoflurane anesthesia. The aim of this study was to investigate the clinical usefulness of a single dose of propofol 1 mg/kg at the end of adenotonsillectomy for reducing the incidence of EA after sevoflurane anesthesia.

Methods: Ninety children, aged 3-8 years, undergoing adenotonsillectomy were randomized into two groups: the propofol group (n = 45) and the saline group (n = 45), of which 88 children completed the study.

View Article and Find Full Text PDF

A novel multiwall carbon nanotube (MWCNT) electrode functionalized with oxygen plasma treatment was prepared and characterized, and its DNA sensing ability for Legionella pneumophila (L. pneumophila) detection was examined using electrochemical measurement. A well-patterned MWCNT working electrode (WE) on a Pt track was fabricated using photolithography, transfer methods and an etching technique.

View Article and Find Full Text PDF

There are many causes of prolonged postoperative muscle weakness, including drugs, residual anesthetics, cerebrovascular events, electrolyte imbalance, hypothermia, and neuromuscular disease. Neuromuscular diseases are relatively rare, with the most common being myasthenia gravis and Lambert-Eaton myasthenic syndrome (LEMS). We report an unusual case in which a patient who was given a muscle relaxant during mediastinoscopy developed postoperative muscle weakness that was ultimately diagnosed as secondary to LEMS.

View Article and Find Full Text PDF

We fabricate hybrid coaxial nanotubes (NTs) of multiwalled carbon nanotubes (MWCNTs) coated with light-emitting poly(3-hexylthiophene) (P3HT). The p-type P3HT material with a thickness of approximately 20 nm is electrochemically deposited onto the surface of the MWCNT. The formation of hybrid coaxial NTs of the P3HT/MWCNT is confirmed by a transmission electron microscope, FT-IR, and Raman spectra.

View Article and Find Full Text PDF

We synthesized thin-multiwalled carbon nanotubes (t-MWCNTs) using Fe-Mo/MgO catalyst by citrate precursor method based on a simple sol-gel technique. Synthesis of high-quality t-MWCNTs with uniform diameters was achieved in large-scale by catalytic decomposition of methane over Fe-Mo/MgO catalyst prepared under Ar-atmosphere. The produced t-MWCNTs had the outer diameters in the range of 4-8 nm, with a Gaussian average diameter of 6.

View Article and Find Full Text PDF

The improved field emission stability of thin multiwalled carbon nanotube (thin-MWCNT) emitters using a tip sonication process has been investigated. The thin-MWCNTs showed short lengths and many open tips after the tip sonication treatment. The field emission properties of the thin-MWCNT emitters were investigated.

View Article and Find Full Text PDF

We fabricated point emitters using a multiwalled carbon nanotube (MWCNT) yarn which was treated by ethylene glycol. The point emitter showed a very high emission current of 3.01 mA (current density of 1.

View Article and Find Full Text PDF

Thin multi-walled carbon nanotubes (MWCNTs) were successfully synthesized by a rapid thermal chemical vapor deposition (RTCVD) method using a liquid catalyst. The growth of the thin MWCNTs was achieved by decomposition of C2H2 over Fe-Mo/MgO/citric acid directly at 700 degrees C for 30 min. Most thin MWCNTs, which had about 6 approximately 8 graphene layers, showed high purity (approximately 90%) and good crystallinity.

View Article and Find Full Text PDF

We have investigated the electrical transports of double-walled carbon nanotube field effect transistors (DWNT-FETs) with modified contacts. The CNT/Au metal contacts of DWNT-FETs were modified with a self-assembled monolayer of 2-aminoethanethiol molecules. In ambient air, the contact-modified DWNT-FETs showed a decreased conductance in the p-channel (negative gate voltages) and an increased conductance in the n-channel (positive gate voltages), while the original device showed p-type transport.

View Article and Find Full Text PDF

Vertically aligned double-walled carbon nanotube (VA-DWCNT) arrays were synthesized by point-arc microwave plasma chemical vapor deposition on Cr/n-Si and SiO(2)/n-Si substrates. The outer tube diameters of VA-DWCNTs are in the range of 2.5-3.

View Article and Find Full Text PDF

Single-walled carbon nanotubes (SWCNTs) were directly synthesized by a hydrogen arc-discharge method by using only Fe catalyst. The synthesized carbon materials indicated high-purity SWCNTs without amorphous carbon materials from SEM observation. The SWCNTs had diameters of 1.

View Article and Find Full Text PDF

Saw-like nanostructures composed of single-crystalline ZnO nanobelts and single-crystalline ZnS nanowires have been successfully synthesized by a vapor-solid process. Several techniques, including scanning electron microscope, transmission electron microscopy, and photoluminescence spectroscopy, were used to investigate the structures, morphology, and photoluminescence properties of the products. Due to the similar crystal habits of wurtzite ZnO and ZnS with chemically active Zn-terminated (0001) and chemically inactive O-terminated (or S-terminated) (000) polar surfaces, hierarchical saw-like nanostructures were considered to be formed by the initiation of a chemically active Zn-terminated ZnO (0001) polar surface.

View Article and Find Full Text PDF