Micromachines (Basel)
December 2021
Most of the miniaturized electromagnetic vibrational energy harvesters (EVEHs) are based on oscillating proof mass suspended by several springs or a cantilever structure. Such structural feature limits the miniaturization of the device's footprint. This paper presents an EVEH device based on a torsional vibrating magnet over a stack of flexible planar coils.
View Article and Find Full Text PDFThis paper presents a low-frequency electromagnetic vibrational energy harvester (EVEH) with two degrees of freedom and two resonant modes. The proposed EVEH is based on a disc magnet suspended in a pendulum fashion by a polymeric spring between two sets of polymer coil stacks. The fabricated EVEH is capable of harvesting vibration energy on two directions with an extended bandwidth.
View Article and Find Full Text PDFThis paper presents a compact electromagnetic vibrational energy harvester (EVEH) with tunable resonance frequency. The resonance frequency of the EVEH is tuned by adjusting the axial stress in the flexible polymeric springs, which is realized by physically pulling and pushing the springs. The stress tuning functionality is realized with a compact structure with small volume.
View Article and Find Full Text PDFA miniaturized reliability test system for microdevices with controlled environmental parameters is presented. The system is capable of measuring key electrical parameters of the microdevices while controlling the environmental conditions around the microdevices. The test system is compact and thus can be integrated with standard test equipment for microdevices.
View Article and Find Full Text PDFThe fluorescence characteristics of dissolved organic matter (DOM) were determined in the seagrass ecosystem collected in Xincun Bay of Hainan Island in late January, 2013, using fluorescence excitation-emission matrix spectroscopy (EEMs). EEMs spectra showed 2 types of fluorescence signals in DOM samples, three hurnic-like fluorescence peaks and two protein-like fluorescence peaks, respectively. The former included UVC peak A (Ex/Em: 230/430 nm), UVA peak C (Ex/Em: 350/440 nm), and UVA peak M (Ex/Em: 300/380-400 nm), while the latter included tryptophan-like peaks R (Ex/Em: 230/355 - 375 nm) and N (Ex/Em: 280-300/365-380 nm).
View Article and Find Full Text PDF