Head motion during diffusion magnetic resonance imaging (MRI) scans can cause numerous artifacts and biases subsequent quantification. However, a thorough characterization of motion across multiple scans, cohorts, and consortiums has not been performed. To address this, we designed a study with three aims.
View Article and Find Full Text PDFWhile typical qualitative T1-weighted magnetic resonance images reflect scanner and protocol differences, quantitative T1 mapping aims to measure T1 independent of these effects. Changes in T1 in the brain reflect structural changes in brain tissue. Magnetization-prepared two rapid acquisition gradient echo (MP2RAGE) is an acquisition protocol that allows for efficient T1 mapping with a much lower scan time per slab compared to multi-TI inversion recovery (IR) protocols.
View Article and Find Full Text PDFIntroduction: The effects of sex and apolipoprotein E (APOE)-Alzheimer's disease (AD) risk factors-on white matter microstructure are not well characterized.
Methods: Diffusion magnetic resonance imaging data from nine well-established longitudinal cohorts of aging were free water (FW)-corrected and harmonized. This dataset included 4741 participants (age = 73.
Proc SPIE Int Soc Opt Eng
February 2024
Connectivity matrices derived from diffusion MRI (dMRI) provide an interpretable and generalizable way of understanding the human brain connectome. However, dMRI suffers from inter-site and between-scanner variation, which impedes analysis across datasets to improve robustness and reproducibility of results. To evaluate different harmonization approaches on connectivity matrices, we compared graph measures derived from these matrices before and after applying three harmonization techniques: mean shift, ComBat, and CycleGAN.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2024
Imaging findings inconsistent with those expected at specific chronological age ranges may serve as early indicators of neurological disorders and increased mortality risk. Estimation of chronological age, and deviations from expected results, from structural magnetic resonance imaging (MRI) data has become an important proxy task for developing biomarkers that are sensitive to such deviations. Complementary to structural analysis, diffusion tensor imaging (DTI) has proven effective in identifying age-related microstructural changes within the brain white matter, thereby presenting itself as a promising additional modality for brain age prediction.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2024
Proc SPIE Int Soc Opt Eng
February 2024
Mapping information from photographic images to volumetric medical imaging scans is essential for linking spaces with physical environments, such as in image-guided surgery. Current methods of accurate photographic image to computed tomography (CT) image mapping can be computationally intensive and/or require specialized hardware. For general purpose 3-D mapping of bulk specimens in histological processing, a cost-effective solution is necessary.
View Article and Find Full Text PDFSubject head motion during the acquisition of diffusion-weighted imaging (DWI) of the brain induces artifacts and affects image quality. Information about the frequency and extent of motion could reveal which aspects of motion correction are most necessary. Therefore, we investigate the extent of translation and rotation among participants, and how the motion changes during the scan acquisition.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2024
Diffusion MRI (dMRI) streamline tractography, the gold-standard for in vivo estimation of white matter (WM) pathways in the brain, has long been considered as a product of WM microstructure. However, recent advances in tractography demonstrated that convolutional recurrent neural networks (CoRNN) trained with a teacher-student framework have the ability to learn to propagate streamlines directly from T1 and anatomical context. Training for this network has previously relied on high resolution dMRI.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
July 2024
Purpose: As large analyses merge data across sites, a deeper understanding of variance in statistical assessment across the sources of data becomes critical for valid analyses. Diffusion tensor imaging (DTI) exhibits spatially varying and correlated noise, so care must be taken with distributional assumptions. Here, we characterize the role of physiology, subject compliance, and the interaction of the subject with the scanner in the understanding of DTI variability, as modeled in the spatial variance of derived metrics in homogeneous regions.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
July 2024
Introduction: The effects of sex, race, and Apolipoprotein E () - Alzheimer's disease (AD) risk factors - on white matter integrity are not well characterized.
Methods: Diffusion MRI data from nine well-established longitudinal cohorts of aging were free-water (FW)-corrected and harmonized. This dataset included 4,702 participants (age=73.
The implementation of a dual-source water supply system offers an increased level of reliability in water provision; however, intricate hydraulic dynamics introduce apprehensions regarding water safety at the hydraulic junction. In this study, we gathered data of the water quality at the hydraulic junction of a dual-source water supply system (plant A and plant B, sampling site A was near plant A, and sampling site A was near plant B) for one year in Suzhou Industrial Park. Our findings indicated that seasonal variations and water temperature exerted significant influence on the composition and formation of disinfection byproducts (DBPs).
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
March 2024
Purpose: Diffusion tensor imaging (DTI) is a magnetic resonance imaging technique that provides unique information about white matter microstructure in the brain but is susceptible to confounding effects introduced by scanner or acquisition differences. ComBat is a leading approach for addressing these site biases. However, despite its frequent use for harmonization, ComBat's robustness toward site dissimilarities and overall cohort size have not yet been evaluated in terms of DTI.
View Article and Find Full Text PDFT1-weighted (T1w) MRI has low frequency intensity artifacts due to magnetic field inhomogeneities. Removal of these biases in T1w MRI images is a critical preprocessing step to ensure spatially consistent image interpretation. N4ITK bias field correction, the current state-of-the-art, is implemented in such a way that makes it difficult to port between different pipelines and workflows, thus making it hard to reimplement and reproduce results across local, cloud, and edge platforms.
View Article and Find Full Text PDFAs the most common filler in stormwater treatment, zeolite (NZ-Y) has good cation exchange capability and stabilization potential for the removal of heavy metal from aqueous solutions. In this study, sodium dodecyl sulfate (SDS) and NZ-Y were selected to preparing new adsorbent (SDS-NZ) by using a simple hydrothermal method. The sorption-desorption performance and mechanism of Cu(II) onto SDS-NZ were investigated.
View Article and Find Full Text PDFPurpose: The motor symptoms (MS) of Parkinson's disease (PD) have been affecting the quality of life in patients. In clinical practice, most patients with PD report that MS are more severe in winter than in summer, and hyperthermic baths (HTB) could temporarily improve MS. The study aimed to evaluate the effects of seasonal variation and aquatic thermal environment of HTB on the MS of PD.
View Article and Find Full Text PDFConnectivity matrices derived from diffusion MRI (dMRI) provide an interpretable and generalizable way of understanding the human brain connectome. However, dMRI suffers from inter-site and between-scanner variation, which impedes analysis across datasets to improve robustness and reproducibility of results. To evaluate different harmonization approaches on connectivity matrices, we compared graph measures derived from these matrices before and after applying three harmonization techniques: mean shift, ComBat, and CycleGAN.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
November 2023
Purpose: Recent advances in magnetic resonance (MR) scanner quality and the rapidly improving nature of facial recognition software have necessitated the introduction of MR defacing algorithms to protect patient privacy. As a result, there are a number of MR defacing algorithms available to the neuroimaging community, with several appearing in just the last 5 years. While some qualities of these defacing algorithms, such as patient identifiability, have been explored in the previous works, the potential impact of defacing on neuroimage processing has yet to be explored.
View Article and Find Full Text PDFT1-weighted (T1w) MRI has low frequency intensity artifacts due to magnetic field inhomogeneities. Removal of these biases in T1w MRI images is a critical preprocessing step to ensure spatially consistent image interpretation. N4ITK bias field correction, the current state-of-the-art, is implemented in such a way that makes it difficult to port between different pipelines and workflows, thus making it hard to reimplement and reproduce results across local, cloud, and edge platforms.
View Article and Find Full Text PDFImaging findings inconsistent with those expected at specific chronological age ranges may serve as early indicators of neurological disorders and increased mortality risk. Estimation of chronological age, and deviations from expected results, from structural magnetic resonance imaging (MRI) data has become an important proxy task for developing biomarkers that are sensitive to such deviations. Complementary to structural analysis, diffusion tensor imaging (DTI) has proven effective in identifying age-related microstructural changes within the brain white matter, thereby presenting itself as a promising additional modality for brain age prediction.
View Article and Find Full Text PDFPurpose: As large analyses merge data across sites, a deeper understanding of variance in statistical assessment across the sources of data becomes critical for valid analyses. Diffusion tensor imaging (DTI) exhibits spatially varying and correlated noise, so care must be taken with distributional assumptions. Here we characterize the role of physiology, subject compliance, and the interaction of subject with the scanner in the understanding of DTI variability, as modeled in spatial variance of derived metrics in homogeneous regions.
View Article and Find Full Text PDFPurpose: Recent advances in magnetic resonance (MR) scanner quality and the rapidly improving nature of facial recognition software have necessitated the introduction of MR defacing algorithms to protect patient privacy. As a result, there are a number of MR defacing algorithms available to the neuroimaging community, with several appearing in just the last five years. While some qualities of these defacing algorithms, such as patient identifiability, have been explored in previous works, the potential impact of defacing on neuroimage processing has yet to be explored.
View Article and Find Full Text PDF