Publications by authors named "Chenyi Ye"

The sensitive detection of Staphylococcus aureus (S. aureus) holds great practical importance for ensuring public health and food safety. In this study, a sensitivity and stability ratiometric electrochemical aptasensor using graphene quantum dots/[Cu (benzotriazole-5-COO) (benzotriazole-5-COOH) (μ-Cl) (μ-OH)-(HO)]·3 HO nanocomposite (GQDs/Cu-MOF) was constructed for S.

View Article and Find Full Text PDF

Ionotropic gelation is widely used to fabricate targeting nanoparticles (NPs) with polysaccharides, leveraging their recognition by specific lectins. Despite the fabrication scheme simply involves self-assembly of differently charged components in a straightforward manner, the identification of a potent combinatory formulation is usually limited by structural diversity in compound collections and trivial screen process, imposing crucial challenges for efficient formulation design and optimization. Herein, we report a diversity-oriented combinatory formulation screen scheme to identify potent gene delivery cargo in the context of precision cardiac therapy.

View Article and Find Full Text PDF

Skeletal diseases impose a considerable burden on society. The clinical and tissue-engineering therapies applied to alleviate such diseases frequently result in complications and are inadequately effective. Research has shifted from conventional therapies based on mesenchymal stem cells (MSCs) to exosomes derived from MSCs.

View Article and Find Full Text PDF

Oncogenic overexpression or activation of C-terminal Src kinase (CSK) has been shown to play an important role in triple-negative breast cancer (TNBC) progression, including tumor initiation, growth, metastasis, drug resistance. This revelation has pivoted the focus toward CSK as a potential target for novel treatments. However, until now, there are few inhibitors designed to target the CSK protein.

View Article and Find Full Text PDF

Unilateral biportal endoscopy (UBE) is a minimally invasive spinal surgery technique increasingly employed in treating degenerative lumbar diseases, such as lumbar disc herniation, lumbar spinal stenosis, and spondylolisthesis. In UBE, two independent yet interconnected surgical channels are established-one for the endoscope and the other for surgical instruments-providing a broad and clear surgical field of view. UBE offers several advantages over traditional open surgery, including reduced tissue damage, shorter hospital stays, and faster recovery times.

View Article and Find Full Text PDF

Background: Epidermal growth factor-like domain protein 7 (EGFL7) is a secreted protein that is differentially expressed in the bone microenvironment; however, the effect of EGFL7 on the osteogenesis of human bone marrow mesenchymal stem cells (hBMSCs) is largely unknown.

Methods: EGFL7 expression in the fracture microenvironment was analyzed based on the Gene Expression Omnibus (GEO) database. Knockdown of EGFL7 by small interfering RNA (siRNA) and in vitro stimulation with recombinant human EGFL7 (rhEGFL7) protein were used to assess alterations in downstream signaling and changes in the osteogenic differentiation and proliferation of hBMSCs.

View Article and Find Full Text PDF

Osteoporosis and osteoporotic fractures comprise a substantial health and socioeconomic burden. The leading cause of osteoporosis is an imbalance in bone formation and bone resorption caused by hyperactive osteoclasts. Therefore, a new strategy to suppress osteoclastogenesis is needed.

View Article and Find Full Text PDF

Osteoporosis (OP) is the most common orthopedic disease in the elderly and the main cause of age-related mortality and disability. However, no satisfactory intervention is currently available in clinical practice. Thus, an effective therapy to prevent or delay the development of OP should be devised.

View Article and Find Full Text PDF

The imbalance of bone homeostasis is the root cause of osteoporosis. However current therapeutic approaches mainly focus on either anabolic or catabolic pathways, which often fail to turn the imbalanced bone metabolism around. Herein we reported that a SIRT-1 agonist mediated molecular therapeutic strategy to reverse the imbalance in bone homeostasis by simultaneously regulating osteogenesis and osteoclastogenesis via locally sustained release of SRT2104 from mineral coated acellular matrix microparticles.

View Article and Find Full Text PDF

Osteochondral regeneration is an orchestrated process of inflammatory immunity, host cell response, and implant degradation in tissue engineering. Here, the effects of a platelet-rich plasma (PRP)-gelatin methacryloyl (GelMA) hydrogel scaffold fabricated using the digital micro-mirror device (DMD) technique for osteochondral repair were investigated in a rabbit model. GelMA hydrogels with different PRP concentrations were fabricated, and their roles in bone marrow mesenchymal stem cells (BMSCs) and macrophage polarization in vitro were investigated.

View Article and Find Full Text PDF

Osteoarthritis (OA) is the main cause of disability in the elderly. Effective intervention in the early and middle stage of osteoarthritis can greatly prevent or slow down the development of the disease, and reduce the probability of joint replacement. However, there is to date no effective intervention for early and middle-stage OA.

View Article and Find Full Text PDF

Osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) plays a key role in bone formation. Parkin, an E3 ubiquitin ligase, related to Parkinson's disease and aging. Previous studies have indicated that Parkinson's disease have a higher risk of osteoporotic fracture.

View Article and Find Full Text PDF

Bergenin is a C-glucoside of 4--methyl gallic acid isolated from several medicinal plants and has multiple biological activities. The aim of this study was to assess the potential usefulness of bergenin in hyperuricemia. We found that bergenin reduced serum urate levels in hyperuricemia mice by promoting renal and gut uric acid excretion.

View Article and Find Full Text PDF

Over-activated osteoclastogenesis, which is initiated by inflammation, has been implicated in osteoporosis. Corilagin, a natural compound extracted from various medicinal herbaceous plants, such as Cinnamomum cassia, has antioxidant and anti-inflammatory activities. We found that Corilagin suppressed osteoclast differentiation in a dose-dependent manner, significantly decreased osteoclast-related gene expression and impaired bone resorption by osteoclasts.

View Article and Find Full Text PDF

: Despite significant advances in the materials and methods development used in surgical repair and postoperative rehabilitation, the adhesion formation remains the most common clinical problem in tendon injuries. Therefore, the development of novel therapies is necessary for targeting at preventing tendon adhesion formation and improving tendon strength. : We used rat fibroblasts for in vitro experiments to determine the optimal concentration of TSA in rats, and then set up negative control group, TSA intervention group, mir-29b interference adenovirus intervention group and TSA and mir-29b interference adenovirus co-intervention group.

View Article and Find Full Text PDF

The metabolicosteopathy known as postmenopausal osteoporosisiscaused by disruption of the balance between bone resorption and osteogenesis, processes that are mediated by osteoclasts and osteoblasts, respectively. The current therapeutic approaches to treating osteoporosis have several limitations. In this study, we demonstrated that the natural chemical compound isoalantolactone (IAL) could inhibit osteoclastogenesis, without affecting osteogenesis.

View Article and Find Full Text PDF

Objectives: The aim of this study was to evaluate the effect of antiosteoporotic drugs on preventing periprosthetic bone loss in calcar 6 and 12 months after total hip arthroplasty.

Methods: The network meta-analysis was conducted guided by the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guideline. A systematic literature search was conducted and 21 studies that enrolled a total of 955 patients with 9 antiosteoporotic drugs met the inclusion criteria.

View Article and Find Full Text PDF

Low back pain (LBP) is one of the most common complains in orthopedic outpatient department and intervertebral disc degeneration (IDD) is one of the most important reasons of LBP. The mechanisms of IDD contain a complex biochemical cascade which includes inflammation, vascular ingrowth, and results in degradation of matrix. In our study, we used both in vitro and in vivo models to investigate the relation between tissue inhibitor of metalloproteinase-3 (TIMP3) expression and IDD.

View Article and Find Full Text PDF

Objectives: Insulin-like growth factor-binding protein 7 (IGFBP7) is a low-affinity insulin growth factor (IGF) binder that may play an important role in bone metabolism. We previously reported that IGFBP7 enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) via the Wnt/β-catenin signalling pathway. In this study, we tried to reveal its function in osteoclast differentiation and osteoporosis.

View Article and Find Full Text PDF

Interleukin (IL)-37, a pivotal anti-inflammatory cytokine and a fundamental inhibitor of innate immunity, has recently been shown to be abnormally expressed in several autoimmune-related orthopedic diseases, including rheumatoid arthritis, ankylosing spondylitis, and osteoporosis. However, the role of IL-37 during osteogenic differentiation of mesenchymal stem cells (MSCs) remains largely unknown. In this study, extracellular IL-37 significantly increased osteoblast-specific gene expression, the number of mineral deposits, and alkaline phosphatase activity of MSCs.

View Article and Find Full Text PDF

External fixation is a common, efficient technique used for humeral shaft stabilization and elbow fractures. There are reports of radial nerve injuries associated with this procedure. In this study, we investigated the course and variability of the radial nerve along the lateral humerus in relation to the elbow joint to determine a relatively safe zone for lateral pin placement in external fixation.

View Article and Find Full Text PDF

Bone mesenchymal stem cells (BMSCs) are important candidates for bone regeneration. The role of Bergenin, a C-glucoside of 4-O-methyl gallic acid obtained from the species, Bergenia, in BMSC osteogenesis has not yet been elucidated. We therefore investigated the effects of Bergenin on the osteogenesis of BMSCs and found that Bergenin enhanced osteoblast-specific markers and downregulated the adipocyte-specific markers .

View Article and Find Full Text PDF

Background: Management of fracture healing with a large bone defect remains a tricky subject in orthopedic trauma. Enhancing osteogenesis of human bone marrow-derived mesenchymal stem cells (hBMSCs) is one of the useful therapeutic strategies for fracture healing. Previous studies have revealed that Apelin may play an important role in bone metabolism.

View Article and Find Full Text PDF

Fracture non-union is the most challenging complication following fracture injuries. Despite ongoing improvements in the surgical technique and implant design, the treatment efficacy of fracture non-union is still far from satisfactory and currently there is no optimal solution. Of all of the methods used for the treatment of non-union, bone tissue bioengineering using scaffolds and mesenchymal stem cells (MSCs) is the most widely studied and has emerged as a promising approach to address these challenges.

View Article and Find Full Text PDF

Heat shock proteins (HSPs) are a family of proteins produced by cells in response to exposure to stressful conditions. In addition to their role as chaperones, they also play an important role in the cardiovascular, immune, and other systems. Normal bone tissue is maintained by bone metabolism, particularly by the balance between osteoblasts and osteoclasts, which are physiologically regulated by multiple hormones and cytokines.

View Article and Find Full Text PDF