Phys Chem Chem Phys
August 2024
Chalcogen bonding (ChB) interactions have drawn intensive attention in the last few decades as interesting alternatives to hydrogen bonding. The applications of ChB were mostly centered on the solid state and have rarely been explored in solution. In this work, a novel strategy for forming ChB-based deep eutectic solvents (DESs) was exploited.
View Article and Find Full Text PDFWith the depletion of non-renewable fossil fuels, there has been an increasing emphasis on renewable biomass. Penicillium oxalicum is notable for its exceptional capacity to secrete a diverse array of enzymes that degrade plant polysaccharides into monosaccharides. These valuable monosaccharides can be harnessed in the production of bioethanol and other sustainable forms of energy.
View Article and Find Full Text PDFCoordination cages have been widely reported to bind a variety of guests, which are useful for chemical separation. Although the use of cages in the solid state benefits the recycling, the flexibility, dynamicity, and metal-ligand bond reversibility of solid-state cages are poor, preventing efficient guest encapsulation. Here we report a type of coordination cage-integrated solid materials that can be swelled into gel in water.
View Article and Find Full Text PDFAs a country with abundant genetic resources of pigs, the domestication history of pigs in China and the adaptive evolution of Chinese pig breeds at different latitudes have rarely been elucidated at the genome-wide level. To fill this gap, we first assembled a high-quality chromosome-level genome of the Chenghua pig and used it as a benchmark to analyse the genomes of 272 samples from three genera of three continents. The divergence of the three species belonging to three genera, Phacochoerus africanus, Potamochoerus porcus, and Sus scrofa, was assessed.
View Article and Find Full Text PDFSingle-pass isothermal hot compression tests on four medium-Mn steels with different C and Al contents were conducted using a Gleeble-3500 thermal simulation machine at varying deformation temperatures (900-1150 °C) and strain rates (0.01-5 s). Based on friction correction theory, the friction of the test stress-strain data was corrected.
View Article and Find Full Text PDFMany chlorophyll-a (Chl-a) remote sensing estimation algorithms have been developed for inland water, and they are proposed always based on some ideal assumptions, which are difficult to meet in complex inland waters. Based on MIE scattering theory, this study calculated the optical properties of mineral particles under different size distribution and refractive index conditions, and the Hydrolight software was employed to simulate remote sensing reflectance in the presence of different mineral particles. The findings indicated that the reflectance is significantly influenced by the slope (j) of particle size distribution function and the imaginary part (n') of the refractive index, with the real part (n) having a comparatively minor impact.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2024
Alkaline deep eutectic solvents (DESs) have been widely employed across diverse fields. A comprehensive understanding of the alkalinity data is imperative for the comprehension of their performance. However, the current range of techniques for quantifying alkalinity is constrained.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2024
Nanocatalytic tumor therapy based on Fenton nanocatalysts has attracted considerable attention because of its therapeutic specificity, enhanced outcomes, and high biocompatibility. Nevertheless, the rate-determining step in Fenton chemistry, which involves the transition of a high-valence metallic center (Fe ) to a Fenton-active low-valence metallic center (Fe ), has hindered advances in nanocatalyst-based therapeutics. In this study, we constructed mesoporous single iron atomic nanocatalysts (mSAFe NCs) by employing catechols from dopamine to coordinate and isolate single iron atoms.
View Article and Find Full Text PDFIn recent years, central precocious puberty (CPP) in children is becoming more common, which seriously affects their physical and psychological health and requires finding a safe and effective treatment method. The aim of this study was to investigate the therapeutic effect of melatonin on CPP. A CPP model was established by subcutaneous injection of 300 micrograms of danazol into 5-day-old female mice, followed by treatment with melatonin and leuprolide.
View Article and Find Full Text PDFThe integrated fast detection technology for electric bikes, riders, helmets, and license plates is of great significance for maintaining traffic safety. YOLOv5 is one of the most advanced single-stage object detection algorithms. However, it is difficult to deploy on embedded systems, such as unmanned aerial vehicles (UAV), with limited memory and computing resources because of high computational load and high memory requirements.
View Article and Find Full Text PDFLayered double hydroxides (LDHs) are excellent catalysts for the oxygen evolution reaction (OER) because of their tunable properties, including chemical composition and structural morphology. An interplay between these adjustable properties and other (including external) factors might not always benefit the OER catalytic activity of LDHs. Therefore, we applied machine learning algorithms to simulate the double-layer capacitance to understand how to design/tune LDHs with targeted catalytic properties.
View Article and Find Full Text PDFIn recent years, the age of children entering puberty is getting lower and the incidence of central precocious puberty is increasing. It is known that melatonin plays an increasingly important role in regulating animal reproduction, but the specific role and mechanism of melatonin in regulating the initiation of puberty remain unclear. The purpose of the current study was to investigate the effect of subcutaneous melatonin injection on pubertal development in female mice and its mechanism of action.
View Article and Find Full Text PDFBackground: Echinochloa crus-galli var. zelayensis is a troublesome weed in rice fields and can be controlled by using quinclorac. However, over-reliance on quinclorac has resulted in resistant (R) barnyardgrass, which differs significantly in its ability to transport quinclorac compared to susceptible (S) barnyardgrass.
View Article and Find Full Text PDFRhizosphere microorganisms can greatly affect plant growth, especially the plant growth-promoting rhizobacteria (PGPR), which can improve plant root development and growth because they contain various biological functions including nitrogen fixation, phosphate solubilization, and phytosiderophore production. This study demonstrates that Cyperus rotundus L. is capable of developing and forming complex underground reproductive systems at arbitrary burial depths and cutting modes due to its extremely strong multiplication and regeneration ability.
View Article and Find Full Text PDFTraditional regulation methods of active sites have successfully optimized the performance of electrocatalysts, but seem unable to achieve further breakthrough in the catalytic activity. Unlike the conventional viewpoint of focusing on single active site, the concept of local microstructure active zone is more comprehensive and new methods to regulate the reaction zone for electrocatalytic reactions are developed accordingly. The local microstructure active zone refers to the zone with high catalytic activity formed by the interaction between active atoms and neighboring coordination atoms as well as the surrounding environment.
View Article and Find Full Text PDFSilicon, a highly biocompatible and ubiquitous chemical element in living systems, exhibits great potentials in biomedical applications. However, the silicon-based nanomaterials such as silica and porous silicon have been largely limited to only serving as carriers for delivery systems, due to the lack of intrinsic functionalities of silicon. This work presents the facile construction of a two-dimensional (2D) hydrogen-bonded silicene (H-silicene) nanosystem which is highlighted with tunable bandgap and selective degradability for tumor-specific photodynamic therapy facilely by surface covalent modification of hydrogen atoms.
View Article and Find Full Text PDFPolytetrafluoroethylene (PTFE)/Al reactive material with different aluminum particle sizes were prepared by molding and sintering, and the effect of aluminum particle size on the impact behavior of PTFE/Al reactive material with a mass ratio of 50:50 was investigated. The results show that aluminum particle size has significant effects on the shock-reduced reaction diffusion, reaction speed, and degree of reaction of the PTFE/Al reactive material. At a moderate strain rate, the reaction delay of PTFE/Al increased, and the reaction duration and degree decreased, with the increase of aluminum particle size.
View Article and Find Full Text PDFThe innate immune system plays a key role in protecting the human body from tumors, which, unfortunately, is largely counteracted by their immune-suppression function. Such an immune suppression has been reported to be induced by the immunosuppressive microenvironment, including the exhausted cytotoxic T lymphocytes (CTLs) and tumor-promoting M2-polarized macrophages. Here, a novel tumor-immunotherapeutic modality based on the nanocatalytic innate immunity activation by tumor-specific mitochondrial DNA (mtDNA) oxidative damage is proposed.
View Article and Find Full Text PDFDevelopment of organic theranostic agents that are active in the second near-infrared (NIR-II, 1000-1700 nm) biowindow is of vital significance for treating deep-seated tumors. However, studies on organic NIR-II absorbing agents for photo-to-heat energy-converting theranostics are still rare simply because of tedious synthetic routes to construct extended π systems in the NIR-II region. Herein, we design a convenient strategy to engineer highly stable organic NIR-II absorbing theranostic nanoparticles (Nano-BFF) for effective phototheranostic applications via co-assembling first NIR (NIR-I, 650-1000 nm) absorbing boron difluoride formazanate (BFF) dye with a biocompatible polymer, endowing the Nano-BFF with remarkable theranostic performance in the NIR-II region.
View Article and Find Full Text PDFA biodegradable linear bio-based polyester of poly(hexylene succinate) was effectively prepared in non-metal sulfonic acid-functionalized Brønsted acidic ionic liquids (SFBAILs) as both the catalyst and the polymerization medium, and the processes of polycondensation and post-polycondensation in SFBAILs were also investigated. In addition, the side reactions which were detrimental to the growth of of poly(hexylene succinate) were evaluated and the synthesis mechanism of poly(hexylene succinate) catalyzed by SFBAILs was discussed with the help of DFT calculations. The result shows that both the imidazole ring and the sulfonic group on cations of SFBAILs play an important role in the catalytic process.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignant tumors with extremely poor prognosis due to the later stage diagnosis when surgical resection is no longer applicable. Alternatively, the traditional gene therapy which drives pancreatic cancer cells into an inactive state and inhibiting the proliferation and metastasis, presents potentials to safely inhibit pancreatic cancer progression, but unfortunately has received limited success to date. Here, an efficient gene therapy of pancreatic cancer is shown via a peptide nucleic acid (PNA)-loaded layered double hydroxides (LDHs) nanoplatform.
View Article and Find Full Text PDFCancer immunotherapy shows promising potential in future cancer treatment but unfortunately is clinically unsatisfactory due to the low therapeutic efficacy and the possible severe immunotoxicity. Here we show a combined magnetic hyperthermia therapy (MHT) and checkpoint blockade immunotherapy for both primary tumor ablation and mimetic metastatic tumor inhibition. Monodispersed, high-performance superparamagnetic CoFeO@MnFeO nanoparticles were synthesized and used for effective MHT-induced thermal ablation of primary tumors.
View Article and Find Full Text PDFSustained tumor oxygenation is of critical importance during type-II photodynamic therapy (PDT), which depends on the intratumoral oxygen level for the generation of reactive oxygen species. Herein, the modification of photosynthetic cyanobacteria with the photosensitizer chlorin e6 (ce6) to form ce6-integrated photosensitive cells, termed ceCyan, is reported. Upon 660 nm laser irradiation, sustained photosynthetic O evolution by the cyanobacteria and the immediate generation of reactive singlet oxygen species ( O ) by the integrated photosensitizer could be almost simultaneously achieved for tumor therapy using type-II PDT both in vitro and in vivo.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2019
Physical exfoliation of layered precursors is one of the most prevailing techniques to prepare two-dimensional (2D) crystals, which, however, is considered to be intrinsically inapplicable to non-layered bulks. Now, plane cleavage differentiation is identified in metallic magnesium at cryogenic temperature (CT), and a cryogenic exfoliation strategy of non-layered magnesium into 2D crystals is developed. The cleavage anisotropy of the Mg lattice in response to the external mechanical stress originates from the CT-induced specific inactivation of basal slip, which results in the basal cleavage perpendicular to c axis.
View Article and Find Full Text PDFArabinoxylan (AX) is abundant in cereal grains used as feed for ducks. However, the duck intestinal microbes responsible for the degradation of AX are not fully understood. In this study, oat AX was degraded and utilized by different duck intestinal microbiota in vitro.
View Article and Find Full Text PDF