Attention is one of the basic cognitive functions sensitive to high altitude, and most studies have focussed on exposure times of approximately 3 years; however, it is unclear how attention changes in migrants who have lived and worked at high altitude for nearly 20 years. We explored the dynamics of attentional networks and neurophysiological mechanisms in migrants over 3-20 years using the Attentional Network Test combined with Electrocardiograph and Electroencephalography and found a consistent quadratic correlation between exposure and executive control efficiency, P3 amplitude and heart rate variability (HRV), with a decrease followed by an increase/relative stability, with approximately 10 years being the breakpoint. However, neither linear nor quadratic trajectories were observed for the alerting and orienting network.
View Article and Find Full Text PDFHuman attentional function is sensitive to hypoxia. However, little is known about whether and how attentional function is altered after acute aerobic exercise at high altitude, especially for acclimatized lowlanders. In this study, we used the Attention Network Test (ANT) to measure alerting, orienting, and executive control functions and the Stroop Color and Word Test (SCWT) with a different proportion of incongruent trials to investigate proactive and reactive control of executive function.
View Article and Find Full Text PDFPseudo-topotactic conversion of carbon nanotubes into one-dimensional carbon nanowires is a challenging but feasible path to obtain desired diameters and morphologies. Here, a previously predicted but experimentally unobserved carbon allotrope, T-carbon, has been produced from pseudo-topotactic conversion of a multi-walled carbon nanotube suspension in methanol by picosecond pulsed-laser irradiation. The as-grown T-carbon nanowires have the same diameter distribution as pristine carbon nanotubes, and have been characterized by high-resolution transmission electron microscopy, fast Fourier transform, electron energy loss, ultraviolet-visible, and photoluminescence spectroscopies to possess a diamond-like lattice, where each carbon is replaced by a carbon tetrahedron, and a lattice constant of 7.
View Article and Find Full Text PDF