Publications by authors named "Chenxi Tu"

A scheme of fiber Fabry-Perot (F-P) cavity refractive index (RI) demodulation named under-sampled length spectrum retrieval (ULSR) is proposed. Unlike the wavelength spectrum method, ULSR can be used for physical quantity detection with just a monochromatic laser and photodetectors, avoiding the need for wideband lasers or expensive infrared spectrometers. Eight F-P cavities of different lengths were fabricated to sample the cavity length spectrum, and then the obtained under-sampled length spectrum was used to demodulate the RI of F-P cavity fillings.

View Article and Find Full Text PDF

Ocular alkali burn is a serious ophthalmic emergency. Highly penetrative alkalis cause strong inflammatory responses leading to persistent epithelial defects, acute corneal perforation and severe scarring, and thereby persistent pain, loss of vision and cicatricial sequelae. Early and effective anti-inflammation management is vital in reducing the severity of injury.

View Article and Find Full Text PDF

Infection can disturb the wound healing process and lead to poor skin regeneration, chronic wound, septicemia and even death. To combat the multi-drug resistance bacteria or fungi, it is urgent and necessary to develop advanced antimicrobial wound dressings. In this study, a composite hydrogel dressing composed of polyvinyl alcohol (PVA), agarose, glycerol and antibacterial hyperbranched polylysine (HBPL) was prepared by a freeze-thawing method.

View Article and Find Full Text PDF

As an alternative strategy to achieve the desired bone augmentation, tenting screw technology (TST) has considerably broadened the indications for implant treatment. Titanium tenting screws are typically used in TST to maintain the space for bone regeneration. However, a high degree of osteogenic integration complicate titanium tenting screw removal and impact the bone healing micro-environment.

View Article and Find Full Text PDF

Patients with diabetes suffer from a variety of complications and easily develop diabetic chronic wounds. The microenvironment of diabetic wounds is characterized by an excessive amount of reactive oxygen species (ROS) and an imbalance of proinflammatory and anti-inflammatory cells/factors, which hinder the regeneration of chronic wounds. In the present study, a wound dressing with immunomodulation and electroconductivity properties was prepared and assayed in vitro and in vivo.

View Article and Find Full Text PDF

The diabetic wound is easily to develop into a chronic wound because of the extremely serious and complex inflammatory microenvironment including biofilm formation, over-expressed reactive oxygen species (ROS), hypoxia and insufficiency of nitric oxide (NO) synthesis. In this work, a multifunctional hydrogel was designed and prepared by crosslinking hydrophilic poly(PEGMA-co-GMA-co-AAm) (PPGA) polymers with hyperbranched poly-L-lysine (HBPL)-modified manganese dioxide (MnO) nanozymes. Pravastatin sodium, which is supposed to participate in the synthesis of NO, was further loaded to obtain the HMP hydrogel.

View Article and Find Full Text PDF

Bacterial infection is a major obstacle to the wound healing process. The hydrogel dressings with a simpler structure and good antibacterial and wound healing performance are appealing for clinical application. Herein, a robust hydrogel was synthesized from acrylamide (AM), acrylic acid (AA) and N,N'-methylene diacrylamide (MBA) via a redox initiating polymerization.

View Article and Find Full Text PDF

Myocardial infarction (MI) is still a major cause of mortality and morbidity worldwide. Elastomer cardiac patches have shown great potential in preventing left ventricle (LV) remodeling post-MI by providing mechanical support to the infarcted myocardium. Improved therapeutic outcomes are expected by mediating pathological processes in the necrosis phase, inflammation phase, and fibrosis phase, through orchestrated biological and mechanical treatments.

View Article and Find Full Text PDF

The modulation of inflammation in tissue microenvironment takes an important role in cartilage repair and regeneration. In this study, a novel hybrid scaffold was designed and fabricated by filling a reactive oxygen species (ROS)-scavenging hydrogel (RS Gel) into a radially oriented poly(lactide-co-glycolide) (PLGA) scaffold. The radially oriented PLGA scaffolds were fabricated through a temperature gradient-guided phase separation and freeze-drying method.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a common chronic inflammatory disease in the joints. It is one of the leading causes of disability with increasing morbidity, which has become one of the serious clinical issues. Current treatments would only provide temporary relief due to the lack of early diagnosis and effective therapy, and thus the replacement of joints may be needed when the OA deteriorates.

View Article and Find Full Text PDF