Oral microecological imbalance is closely linked to oral mucosal inflammation and is implicated in the development of both local and systemic diseases, including those caused by viral infections. This review examines the critical role of the interleukin (IL)-17/helper T cell 17 (Th17) axis in regulating immune responses within the oral mucosa, focusing on both its protective and pathogenic roles during inflammation. We specifically highlight how the IL-17/Th17 pathway contributes to dysregulated inflammation in the context of respiratory viral infections.
View Article and Find Full Text PDFComb Chem High Throughput Screen
June 2024
Aims: This study aimed to examine the associations of FTO expression with prognosis, tumor microenvironment (TME), immune cell infiltration, immune checkpoint genes, and relevant signaling pathways in GC. Furthermore, the relationship between FTO and TGF-β was studied in GC.
Methods: The mRNA expression and clinical survival data of GC samples were obtained from The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD).
Int Immunopharmacol
February 2024
Multicomponent reactions represent a powerful method for building complex molecules from structurally simple starting materials. Herein, we report a novel three-component radical-polar crossover reaction involving a tandem addition reaction of two different olefins, which is initiated by the selective addition of fluorosulfonyl radicals to alkyl alkenes. This tandem process provides facile and effective access to multiple functionalized aliphatic sulfonyl fluoride molecules.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2021
Sulfonyl fluorides have widespread applications in many important fields, including ligation chemistry, chemical biology, and drug discovery. Therefore, new methods to increase the synthetic efficiency and expand the available structures of sulfonyl fluorides are highly in demand. Here, we introduce a new and powerful class of sulfonyl fluoride hubs, β-chloro alkenylsulfonyl fluorides (BCASF), which can be constructed via radical chloro-fluorosulfonyl difunctionalization of alkynes under photoredox conditions.
View Article and Find Full Text PDFSystemic chronic hypoxia is a feature of many diseases and may influence the communication between bone marrow (BM) and gut microbiota. Here we analyse patients with cyanotic congenital heart disease (CCHD) who are experiencing chronic hypoxia and characterize the association between bone marrow mesenchymal stem cells (BMSCs) and gut microbiome under systemic hypoxia. We observe premature senescence of BMSCs and abnormal D-galactose accumulation in patients with CCHD.
View Article and Find Full Text PDF