Acta Biochim Biophys Sin (Shanghai)
July 2024
Acquired resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs) represents a primary cause of treatment failure in non-small cell lung cancer (NSCLC) patients. Chemokine (C-C motif) ligand 2 (CCL2) is recently found to play a pivotal role in determining anti-cancer treatment response. However, the role and mechanism of CCL2 in the development of EGFR-TKIs resistance have not been fully elucidated.
View Article and Find Full Text PDFThis study aimed to improve the use of YF8, a matrine derivative obtained through chemical transformation of matrine extracted from . YF8 has demonstrated improved cytotoxicity compared to matrine, but its hydrophobic nature hinders its application. To overcome this, the lipid prodrug YF8-OA was synthesized by linking oleic acid (OA) to YF8 through an ester bond.
View Article and Find Full Text PDFThe sex detection of chicks is an important work in poultry breeding. Separating chicks of different sexes early can effectively improve production efficiency and commercial benefits. In this paper, based on the difference in calls among one-day-old chicks of different sexes, a sex detection method based on chick calls is designed.
View Article and Find Full Text PDFProtein tyrosine phosphatase receptor-type Q (PTPRQ), a member of the type III tyrosine phosphatase receptor (R3 PTPR) family, is composed of three domains, including 18 extracellular fibronectin type III (FN3) repeats, a transmembrane helix, and a cytoplasmic phosphotyrosine phosphatase (PTP) domain. PTPRQ was initially identified as a transcript upregulated in glomerular mesangial cells in a rat model of glomerulonephritis. Subsequently, studies found that PTPRQ has phosphotyrosine phosphatase and phosphatidylinositol phosphatase activities and can regulate cell proliferation, apoptosis, differentiation, and survival.
View Article and Find Full Text PDFAnticancer Agents Med Chem
December 2021
Chemoresistance, which leads to the failure of chemotherapy and further tumor recurrence, presents the largest hurdle for the success of anti-cancer therapy. In recent years, metformin, a widely used first-line antidiabetic drug, has attracted increasing attention for its anti-cancer effects. A growing body of evidence indicates that metformin can sensitize tumor responses to different chemotherapeutic drugs, such as hormone modulating drugs, anti-metabolite drugs, antibiotics, and DNA-damaging drugs via selective targeting of Cancer Stem Cells (CSCs), improving the hypoxic microenvironment, and by suppressing tumor metastasis and inflammation.
View Article and Find Full Text PDF