Influenza A virus (IAV) infection induces mitophagy, which is essential for the clearance of damaged mitochondria. Dysfunctional mitochondria can be selectively targeted by PINK1, which recruits PRKN/PARK2 and leads to subsequent mitochondrial sequestration within autophagosomes. The IAV PB1-F2 protein translocates to mitochondria, accelerates the mitochondrial fragmentation and impairs the innate immunity.
View Article and Find Full Text PDFInfluenza A virus can evade host innate immune response that is involved in several viral proteins with complicated mechanisms. To date, how influenza A M2 protein modulates the host innate immunity remains unclear. Herein, we showed that M2 protein colocalized and interacted with MAVS (mitochondrial antiviral signaling protein) on mitochondria, and positively regulated MAVS-mediated innate immunity.
View Article and Find Full Text PDFInfluenza A virus (IAV) infection could induce autophagosome accumulation. However, the impact of the autophagy machinery on IAV infection remains controversial. Here, we showed that induction of cellular autophagy by starvation or rapamycin treatment increases progeny virus production, while disruption of autophagy using a small interfering RNA (siRNA) and pharmacological inhibitor reduces progeny virus production.
View Article and Find Full Text PDFJ Virol Methods
January 2019
H9N2 avian influenza virus is threatening animals and public health systems. Effective diagnosis is imperative to control the disease. Thus, we developed a panel of monoclonal antibodies (Mabs) against the H9N2 avian influenza virus (AIV) and implemented a double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) to detect the H9 viral antigen.
View Article and Find Full Text PDF