Publications by authors named "Chenuil A"

Genetic data show that many nominal species are composed of more than one biological species, and thus contain cryptic species in the broad sense (including overlooked species). When ignored, cryptic species generate confusion which, beyond biodiversity or vulnerability underestimation, blurs our understanding of ecological and evolutionary processes and may impact the soundness of decisions in conservation or medicine. However, very few hypotheses have been tested about factors that predispose a taxon to contain cryptic or overlooked species.

View Article and Find Full Text PDF

The ability to gather genetic information using DNA metabarcoding of bulk samples obtained directly from the environment is crucial to determine biodiversity baselines and understand population dynamics in the marine realm. While DNA metabarcoding is effective in evaluating biodiversity at community level, genetic patterns within species are often concealed in metabarcoding studies and overlooked for marine invertebrates. In the present study, we implement recently developed bioinformatics tools to investigate intraspecific genetic variability for invertebrate taxa in the Mediterranean Sea.

View Article and Find Full Text PDF

Background: In metabarcoding analyses, the taxonomic assignment is crucial to place sequencing data in biological and ecological contexts. This fundamental step depends on a reference database, which should have a good taxonomic coverage to avoid unassigned sequences. However, this goal is rarely achieved in many geographic regions and for several taxonomic groups.

View Article and Find Full Text PDF

Gene flow governs the contemporary spatial structure and dynamic of populations as well as their long-term evolution. For species that disperse using atmospheric or oceanic flows, biophysical models allow predicting the migratory component of gene flow, which facilitates the interpretation of broad-scale spatial structure inferred from observed allele frequencies among populations. However, frequent mismatches between dispersal estimates and observed genetic diversity prevent an operational synthesis for eco-evolutionary projections.

View Article and Find Full Text PDF

Autonomous Reef Monitoring Structures (ARMS) have been applied worldwide to characterize the critical yet frequently overlooked biodiversity patterns of marine benthic organisms. In order to disentangle the relevance of environmental factors in benthic patterns, here, through standardized metabarcoding protocols, we analyse sessile and mobile (<2 mm) organisms collected using ARMS deployed across six regions with different environmental conditions (3 sites × 3 replicates per region): Baltic, Western Mediterranean, Adriatic, Black and Red Seas, and the Bay of Biscay. A total of 27,473 Amplicon Sequence Variants (ASVs) were observed ranging from 1,404 in the Black Sea to 9,958 in the Red Sea.

View Article and Find Full Text PDF

Invasive species, and especially invasive parasites, represent excellent models to study ecological and evolutionary mechanisms in the wild. To understand these processes, it is crucial to obtain more knowledge on the native range, invasion routes and invasion history of invasive parasites. We investigated the consecutive invasions of two parasitic copepods (Mytilicola intestinalis and Mytilicola orientalis) by combining an extensive literature survey covering the reported putative native regions and the present-day invaded regions with a global phylogeography of both species.

View Article and Find Full Text PDF

We investigated the validity of Autonomous Reef Monitoring Structures (ARMS) as monitoring tools for hard bottoms across a wide geographic and environmental range. We deployed 36 ARMS in the northeast Atlantic, northwest Mediterranean, Adriatic and Red Sea at 7-17 m depth. After 12-16 months, community composition was inferred from photographs, in six plate-faces for each ARMS.

View Article and Find Full Text PDF

Ecosystem engineering species alter the physical structure of their environment and can create or modify habitats, having a massive impact on local biodiversity. Coralligenous reefs are highly diverse habitats endemic to the Mediterranean Sea built by calcareous benthic organisms among which Crustose Coralline Algae are the main engineering species. We analyzed the diversity of Lithophyllum stictiforme or L.

View Article and Find Full Text PDF

The understanding of ecosystem services is essential to support sustainable use and preservation of ecosystems. Coralligenous habitats, main contributors of the Mediterranean marine biodiversity, are yet understudied in term of services provided. This study presents an original small-scale approach to investigate the services provided by coralligenous habitats of a French study area consisting of two marine sites (Marseille and Port-Cros sites) in order to cover two contrasted anthropogenic pressure despite the small-scale.

View Article and Find Full Text PDF

Accurate species delimitation is essential to properly assess biodiversity, but also for management and conservation purposes. Yet, it is not always trivial to accurately define species boundaries in closely related species due to incomplete lineage sorting. Additional difficulties may be caused by hybridization, now evidenced as a frequent phenomenon.

View Article and Find Full Text PDF

In a world of declining biodiversity, monitoring is becoming crucial. Molecular methods, such as metabarcoding, have the potential to rapidly expand our knowledge of biodiversity, supporting assessment, management, and conservation. In the marine environment, where hard substrata are more difficult to access than soft bottoms for quantitative ecological studies, Artificial Substrate Units (ASUs) allow for standardized sampling.

View Article and Find Full Text PDF

Genetic diversity is crucial for species' maintenance and persistence, yet is often overlooked in conservation studies. Species diversity is more often reported due to practical constraints, but it is unknown if these measures of diversity are correlated. In marine invertebrates, adults are often sessile or sedentary and populations exchange genes via dispersal of gametes and larvae.

View Article and Find Full Text PDF

Species flocks (SFs) fascinate evolutionary biologists who wonder whether such striking diversification can be driven by normal evolutionary processes. Multiple definitions of SFs have hindered the study of their origins. Previous studies identified a monophyletic taxon as a SF if it displays high speciosity in an area in which it is endemic (criterion 1), high ecological diversity among species (criterion 2), and if it dominates the habitat in terms of biomass (criterion 3); we used these criteria in our analyses.

View Article and Find Full Text PDF

Wide-ranging, indicator-based assessments of large, complex ecosystems are playing an increasing role in guiding environmental policy and management. An example is the EU's Marine Strategy Framework Directive, which requires Member States to take measures to reach "good environmental status" (GES) in European marine waters. However, formulation of indicator targets consistent with the Directive's high-level policy goal of sustainable use has proven challenging.

View Article and Find Full Text PDF

Closely related species are key models to investigate mechanisms leading to reproductive isolation and early stages of diversification, also at the genomic level. The brittle star cryptic species complex Ophioderma longicauda encompasses the sympatric broadcast-spawning species C3 and the internal brooding species C5. Here, we used de novo transcriptome sequencing and assembly in two closely related species displaying contrasting reproductive modes to compare their genetic diversity and to investigate the role of natural selection in reproductive isolation.

View Article and Find Full Text PDF

Dispersal plays a key role to connect populations and, if limited, is one of the main processes to maintain and generate regional biodiversity. According to neutral theories of molecular evolution and biodiversity, dispersal limitation of propagules and population stochasticity are integral to shaping both genetic and community structure. We conducted a parallel analysis of biological connectivity at genetic and community levels in marine groups with different dispersal traits.

View Article and Find Full Text PDF

Closely related species with divergent life history traits are excellent models to infer the role of such traits in genetic diversity and connectivity. Ophioderma longicauda is a brittle star species complex composed of different genetic clusters, including brooders and broadcasters. These species diverged very recently and some of them are sympatric and ecologically syntopic, making them particularly suitable to study the consequences of their trait differences.

View Article and Find Full Text PDF

Preliminary analyses revealed the presence of at least five mitochondrial clades within the widespread sea urchin Echinocardium cordatum (Spatangoida). In this study, we analyzed the genetic (two mitochondrial and two nuclear sequence loci) and morphological characteristics (20 indices) from worldwide samples of this taxon to establish the species limits, morphological diversity and differentiation. Co-occurring spatangoid species were also analyzed with mitochondrial DNA.

View Article and Find Full Text PDF

The Kerguelen archipelago, isolated in the Southern Ocean, shelters a blue mussel Mytilus metapopulation far from any influence of continental populations or any known hybrid zone. The finely carved coast leads to a highly heterogeneous habitat. We investigated the impact of the environment on the genetic structure in those Kerguelen blue mussels by relating allele frequencies to habitat descriptors.

View Article and Find Full Text PDF
Article Synopsis
  • - Connectivity among populations is crucial for understanding their dynamics and evolution, and accurately defining evolutionary units (like populations and species) is essential for ecology and conservation biology.
  • - There is a disconnect between taxonomists and molecular ecologists, especially in marine environments, where many species remain unidentified and cryptic species are common, leading to biased estimates of population connectivity.
  • - The study proposes ways to improve species delimitation by treating it as testable hypotheses and suggests better sampling strategies to enhance the accuracy of connectivity studies in relation to taxonomic work.
View Article and Find Full Text PDF

Cryptic species are numerous in the marine environment. The brittle star Ophioderma longicauda is composed of six mitochondrial lineages, encompassing brooders, which form a monophyletic group, and broadcasters, from which the brooders are derived. To clarify the species limits within O.

View Article and Find Full Text PDF

Genetic diversity is the amount of variation observed between DNA sequences from distinct individuals of a given species. This pivotal concept of population genetics has implications for species health, domestication, management and conservation. Levels of genetic diversity seem to vary greatly in natural populations and species, but the determinants of this variation, and particularly the relative influences of species biology and ecology versus population history, are still largely mysterious.

View Article and Find Full Text PDF

Global warming is expected to change marine species distributions; it is thus critical to understand species current thermotolerance. The brittle star species complex Ophioderma longicauda comprises a broadcast spawning lineage L1 and a brooding lineage L3. We collected L1 specimens from Marseilles and Crete, and L3 specimens from Crete.

View Article and Find Full Text PDF

Exon Primed Intron Crossing (EPIC) markers provide molecular tools that are susceptible to be variable within species while remaining amplifiable by PCR using potentially universal primers. In this study we tested the possibility of obtaining PCR products from 50 EPIC markers on 23 species belonging to seven different phyla (Porifera, Cnidaria, Arthropoda, Nematoda, Mollusca, Annelida, Echinodermata) using 70 new primer pairs. A previous study had identified and tested those loci in a dozen species, including another phylum, Urochordata (Chenuil et al.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses the need for practical methods to define and evaluate species flocks, particularly in the Antarctic shelf's benthic fauna.
  • The authors apply five criteria to assess various taxa, focusing on historical criteria of endemicity, monophyly, and species richness due to practical limitations.
  • They identify nine definitive species flocks, suggest eight additional "core flocks" for further ecological study, and challenge the idea that marine species flocks are uncommon.
View Article and Find Full Text PDF