Publications by authors named "Chenrun Feng"

The first study of the flexo-ionic effect, i.e., mechanical deformation-induced electric signal, of the recently discovered ionic liquid crystal elastomers (iLCEs) is reported.

View Article and Find Full Text PDF

The present article entails the generation of flexoelectricity during cantilever bending of a solid polymer electrolyte membrane (PEM), composed of poly(ethylene glycol) diacrylate (PEGDA) precursor and ionic liquid (hexylmethylimidazolium hexafluorophosphate). The effects of thiosiloxane modification of PEGDA precursor on glass transition, ionic conductivity, and flexoelectric performance have been explored as a function of PEM composition. The glass transition temperature () of the PEM declines with increasing thiosiloxane amount in the PEGDA co-network, while the ionic conductivity improves.

View Article and Find Full Text PDF

Preparation and low voltage induced bending (converse flexoelectricity) of crosslinked poly(ethylene glycol) diacrylate (PEGDA), modified with thiosiloxane (TS) and ionic liquid (1-hexyl-3-methylimidazolium hexafluorophosphate) (IL) are reported. In between 2µm PEDOT:PSS electrodes at 1 V, it provides durable (95% retention under 5000 cycles) and relatively fast (2 s switching time) actuation with the second largest strain observed so far in ionic electro-active polymers (iEAPs). In between 40 nm gold electrodes under 8 V DC voltage, the film can be completely curled up (270° bending angle) with 6% strain that, to the best of the knowledge, is unpreceded among iEAPs.

View Article and Find Full Text PDF

This paper describes the preparation, physical properties, and electric bending actuation of a new class of active materials-ionic liquid crystal elastomers (iLCEs). It is demonstrated that iLCEs can be actuated by low-frequency AC or DC voltages of less than 1 V. The bending strains of the unoptimized first iLCEs are already comparable to the well-developed ionic electroactive polymers.

View Article and Find Full Text PDF