With the explosive 3D data growth, the urgency of utilizing zero-shot learning to facilitate data labeling becomes evident. Recently, methods transferring language or language-image pre-training models like Contrastive Language-Image Pre-training (CLIP) to 3D vision have made significant progress in the 3D zero-shot classification task. These methods primarily focus on 3D object classification with an aligned pose; such a setting is, however, rather restrictive, which overlooks the recognition of 3D objects with open poses typically encountered in real-world scenarios, such as an overturned chair or a lying teddy bear.
View Article and Find Full Text PDF