Publications by authors named "Chenpeng Zuo"

Unlabelled: Prostaglandins (PGs) are profound hormones in teleost sexual behavior, especially in mating. PGs act as pheromones that affect the olfactory sensory neurons of males, inducing the initiation of a series of mating behaviors. However, the molecular mechanism by which PGs trigger mating behavior in ovoviviparous teleosts is still unclear.

View Article and Find Full Text PDF

Fibroblast growth factors (FGFs) are a family of structurally related peptides that regulate processes such as cell proliferation, differentiation, and damage repair. In our previous study, fibroblast growth factor receptor 4 (fgfr4) was detected in the most significant quantitative trait loci (QTL), when identified of QTLs and genetic markers for growth-related traits in spotted sea bass. However, knowledge of the function of fgfr4 is lacking, even the legends to activate the receptor is unknown in fish.

View Article and Find Full Text PDF

Fish have evolved various reproductive strategies including oviparity, viviparity, and ovoviviparity, which undoubtedly affect the survival of the whole species continuity. As the final step in reproduction, parturition in viviparous vertebrate and ovulation in oviparous teleost seem to share a similar mechanism, when prostaglandins (PGs) act as the trigger to launch the whole process. In the present study, ovoviviparous teleost black rockfish (Sebastes schlegelii) is employed as the research object.

View Article and Find Full Text PDF

Along with the evolution process, the reproductive strategies evolved including oviparity, viviparity and ovoviviparity, to fit the residential environment maximize the survival rate of the off spring. In mammals, the key to the initiation of parturition is the inflammatory response at the maternal-fetal interface. As a pro-inflammatory cytokine, interleukin 1 beta (IL1β) plays an important role in the process of human parturition.

View Article and Find Full Text PDF

Prostaglandins (PGs) are a type of physiologically active unsaturated fatty acids. As an important sex pheromone, PGs play a vital role in regulating the reproductive behaviors of species by mediating nerve and endocrine responses. In this study, guppy (Poecilia reticulate) was used as the model specie to detect the function of PGE in inducing the onset of courtship behaviors.

View Article and Find Full Text PDF

Secretoneurin (SN), a conserved peptide derived from secretogranin-2 (scg2), also known as secretogranin II or chromogranin C, plays an important role in regulating gonadotropin in the pituitary, which affects the reproductive system. This study aimed to clarify the mode of action of scg2 in regulating gonad development and maturation and the expression of mating behavior-related genes. Two scg2 cDNAs were cloned from the ovoviviparity teleost black rockfish (Sebastes schlegelii).

View Article and Find Full Text PDF

To guarantee the quality and survival rate of their offspring, ovoviviparous teleost evolved special characteristics of in vivo fertilization and embryo development. Maternal black rockfish, having over 50 thousand embryos developing within the ovary simultaneously, provided around 40% nutrition throughout oocyte development, while the capillaries around each embryo contributed the rest 60% during pregnancy. Since fertilization, capillaries started to proliferate and developed into a placenta-like structure that covered over half of each embryo.

View Article and Find Full Text PDF

Neurokinin B (NKB), a member of the tachykinin (TAC) family, plays important roles in mammalian neuropeptide secretion in related to reproduction. However, its potential role in spawning migration teleost is less clear. In the present study, Japanese eel () was employed to study the performance of NKB in regulating reproduction.

View Article and Find Full Text PDF

Glucocorticoid receptors (GRs) are ligand-activated transcription factors associated with anti-inflammation, stress, metabolism and gonadal development. In this study, two gr genes (gr1 and gr2) were cloned and analyzed from a viviparous teleost, black rockfish (Sebastes schlegelii). The phylogenetic analysis of GRs showed that GR1 and GR2 clustered into teleost GR1 and GR2 separately and differed from the GRs of tetrapods or basal ray-finned fishes.

View Article and Find Full Text PDF

Propionamide (PA), an important pollutant emitted into the atmosphere from a variety of sources, is abundant in many areas worldwide, and could be involved in new particle formation (NPF). In this study, the enhancement of the HSO (SA)-based NPF by PA was evaluated through investigating the formation mechanism of (PA) (SA) ( = 0-3 and = 0-3) clusters using computational chemistry and kinetics modeling. Our study proved that the formation of all the PA-containing clusters is thermodynamically favorable.

View Article and Find Full Text PDF

Amides, a series of significant atmospheric nitrogen-containing volatile organic compounds (VOCs), can participate in new particle formation (NPF) throught interacting with sulfuric acid (SA) and organic acids. In this study, we investigated the molecular interactions of formamide (FA), acetamide (AA), N-methylformamide (MF), propanamide (PA), N-methylacetamide (MA), and N,N-dimethylformamide (DMF) with SA, acetic acid (HAC), propanoic acid (PAC), oxalic acid (OA), and malonic acid (MOA). Global minimum of clusters were obtained through the association of the artificial bee colony (ABC) algorithm and density functional theory (DFT) calculations.

View Article and Find Full Text PDF

Aerosol samples from all over the word contained 2-methyltetrol sulfate ester (MTS). We investigated the role of MTS in new particle formation (NPF) with aerosol nucleation precursors, including sulfuric acid (SA), water (W), ammonia (N), methylamine (MA), dimethylamine (DMA), and trimethylamine (TMA). The analysis was performed using quantum chemical approach, kinetic calculation and molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Benzofuran (BF), benzothiophene (BT), indole (IN), dibenzofuran (DBF), dibenzothiophene (DBT), and carbazole (CA) are typical heterocyclic aromatic compounds (NSO-HETs), which can coexist with polycyclic aromatic hydrocarbons (PAHs) in combustion and pyrolysis conditions. In this work, quantum chemical calculations were carried out to investigate the formation of DBF, DBT, and CA from the reactions of BF, BT, and IN with a cyclopentadienyl radical (CPDyl) by using the hybrid density functional theory (DFT) at the MPWB1K/6-311+G(3df,2p)//MPWB1K/6-31+G(d,p) level. The rate constants of crucial elementary steps were deduced over 600-1200 K, using canonical variational transition state theory with a small-curvature tunneling contribution (CVT/SCT).

View Article and Find Full Text PDF

Aromatic acids, which are generated from numerous anthropogenic emissions and secondary transformations, have been considered to play a crucial role in new particle formation. In this study, we performed theoretical calculations at the PW91PW91/6-311++G(3df,3pd) level to investigate the interaction between typical aromatic acids namely benzoic acid (BA), phenylacetic acid (PAA), phthalic acid (PA), isophthalic acid (mPA), and terephthalic acid (PTA) and common atmospheric nucleation precursors namely sulfuric acid (SA), water (HO), ammonia (NH), methylamine (MA), dimethylamine (DMA), and trimethylamine (TMA). The geometric analysis, Gibbs free energy analysis, OH/NH-stretching vibrational frequency calculation, and atoms in molecules (AIM) analysis were conducted to determine the interactions in the complexes.

View Article and Find Full Text PDF

Chlorothiophenols (CTPs) are known to be key and direct precursors of polychlorinated thianthrene/dibenzothiophenes (PCTA/DTs). Self/cross-coupling of the chlorothiophenoxy radicals (CTPRs), sulfydryl-substituted phenyl radicals and thiophenoxyl diradicals evolving from CTPs are initial and important steps for PCTA/DT formation. In this study, quantum chemical calculations were carried out to investigate the homogenous gas-phase formation of PCTA/DTs from self/cross-coupling of 2,4-dichlorothiophenoxy radical (R1), 2-sulfydryl-3,5-dichlorophenyl radical (R2) and 3,5-dichlorothiophenoxyl diradical (DR) at the MPWB1K/6-311+G(3df,2p)//MPWB1K/6-31+G(d,p) level.

View Article and Find Full Text PDF
Article Synopsis
  • Polychlorinated phenoxathiins, dibenzothiophenes, and thianthrenes are sulfur-based analogues of toxic compounds called dioxins and furans, and their formation is tied to specific chemical precursors.
  • Previous studies didn’t adequately explain why dibenzothiophenes are found in higher concentrations than thianthrenes during pyrolysis or combustion processes.
  • This research employs thermodynamic and kinetic analyses to uncover how these compounds are formed through radical/molecule interactions, demonstrating that the coupling of certain radicals favors the production of dibenzothiophenes over thianthrenes, thus clarifying their environmental ratios.
View Article and Find Full Text PDF

The metabolic activation and transformation of naphthalene by the cytochrome P450 enzyme (CYP 1B1) plays an important role in its potential carcinogenicity. The process has been explored by a quantum mechanics/molecular mechanics (QM/MM) computational method. Molecular dynamic simulations were performed to explore the interaction between naphthalene and CYP 1B1.

View Article and Find Full Text PDF