Publications by authors named "Chenmao Wang"

The advance of genetic function indicators has enabled the observation of neuronal activities at single-cell resolutions. A major challenge for the applications on mammalian brains is the limited optical access depth. Currently, the method of choice to access deep brain structures is to insert miniature optical components.

View Article and Find Full Text PDF

Neural modulation plays a major role in delineating the circuit mechanisms and serves as the cornerstone of neural interface technologies. Among the various modulation mechanisms, ultrasound enables noninvasive label-free deep access to mammalian brain tissue. To date, most if not all ultrasonic neural modulation implementations are based on ∼1 MHz carrier frequency.

View Article and Find Full Text PDF

To understand neural circuit mechanisms underlying behavior, it is crucial to observe the dynamics of neuronal structure and function in different regions of the brain. Since current noninvasive imaging technologies allow cellular-resolution imaging of neurons only within ~1 mm below the cortical surface, the majority of mouse brain tissue remains inaccessible. While miniature optical imaging probes allow access to deep brain regions, cellular-resolution imaging is typically restricted to a small tissue volume.

View Article and Find Full Text PDF

Laser scanning plays an important role in a broad range of applications. Toward 3D aberration-free scanning, a remote focusing technique has been developed for high-speed imaging applications. However, the implementation of remote focusing often suffers from a limited axial scan range as a result of unknown aberration.

View Article and Find Full Text PDF

Phosphorescence lifetime measurement holds great importance in life sciences and material sciences. Due to the long lifetime of phosphorescence emission, conventional approaches based on point scanning time-domain recording suffer from long recording time and low signal-to-noise ratio (SNR). To overcome these difficulties, we developed a line scanning mechanical streak camera for parallel and high SNR imaging.

View Article and Find Full Text PDF