DNA methylation is an epigenetic modification that plays a crucial role in various biological processes. Aberrant DNA methylation is closely associated with the onset of diseases, and the specific localization of methylation sites in the genome offers further insight into the connection between methylation and diseases. Currently, there are numerous methods available for site-specific methylation detection.
View Article and Find Full Text PDFAs an enzyme-free exponential nucleic acid amplification method, the click chemistry-mediated ligation chain reaction (ccLCR) has shown great prospects in the molecular diagnosis. However, the current optics-based ccLCR is challenged by remarkable nonspecific amplification, severely hindering its future application. This study demonstrated that the severe nonspecific amplification was generated probably due to high random collision in the high DNA probe concentration (μM level).
View Article and Find Full Text PDFAccurate and sensitive detection of single-base mutations in RNAs is of great value in basic studies of life science and medical diagnostics. However, the current available RNA detection methods are challenged by heterogeneous clinical samples in which trace RNA mutants usually existed in a large pool of normal wild sequences. Thus, there is still great need for developing the highly sensitive and highly specific methods in detecting single-base mutations of RNAs in heterogeneous clinical samples.
View Article and Find Full Text PDFChallenged by the detection of trace amounts of mutants and disturbance from endogenous substances in clinical samples, herein, we present a novel electrochemical biosensor based on ligase chain reaction (eLCR) via the thermostable ligase with high mutation recognizing ability. The lengthened double-stranded DNAs exponentially generated via LCR were uniformly distributed on a bovine serum albumin-modified gold electrode, in which the phosphate buffer was tactfully added to remove adsorbed uninterested-probes, and thereafter the amperometry current was collected for the specific binding of streptavidin-poly-HRP and subsequent catalysis in the 3, 3', 5, 5'-tetramethylbenzidine substrate that contained hydrogen peroxide. It found that, under optimized conditions, the proposed biosensor exhibited a high selectivity of mutant targets from the 10-fold excess of co-existent wild targets within a detection limit of 0.
View Article and Find Full Text PDFAs an alternative to most of the reported nucleic acid amplification-based electrochemical DNA biosensors used for detection of trace levels of genomic DNA, we herein present a novel detection concept. The proposed system involves the conversion of two short double-stranded DNAs (dsDNAs), labeled with a thiol-tag or biotin-tag, into a single integrated dsDNA containing thiol and biotin at both terminals in the presence of target DNA through ligase chain reaction (LCR) and followed by the immobilization of these integrated dsDNAs on a bovine serum albumin (BSA)-modified gold electrode surface. Owing to rapid depletion of the two short dsDNAs via LCR, the integrated dsDNAs were generated in an exponential manner so that this sensoring approach offered a limit of detection of 25 yoctomoles (15 copies in 50 μL sample volumes), a high discrimination of single-base mismatch and a wide linear concentration range (across 6 orders of magnitude) for target DNA.
View Article and Find Full Text PDFPresently, most reported electrochemical biosensors, for highly sensitive and selective detection of nucleic acid, still require multiple, time-consuming assembly steps and high-consumption DNA probes as well as lack good performance in human serum, which greatly limit their applicability. Herein, an easy-to-fabricate electrochemical DNA biosensor constructed by assembly of bovine serum albumin (BSA) followed with direct incubation of amplified products has been proposed. This method combined terminal deoxynucleoside transferase (TdTase)-mediated isothermal amplification and polyHRP catalysis to achieve dual-signal enhancement, and was featured with low-density DNA monolayer for its employment of only 2 nM capture probes.
View Article and Find Full Text PDF