Publications by authors named "Chenli Liu"

Bacterial immunotherapy holds promising cancer-fighting potential. However, unlocking its power requires a mechanistic understanding of how bacteria both evade antimicrobial immune defenses and stimulate anti-tumor immune responses within the tumor microenvironment (TME). Here, by harnessing an engineered Salmonella enterica strain with this dual proficiency, we unveil an underlying singular mechanism.

View Article and Find Full Text PDF

"Living therapeutic carriers" present a promising avenue for cancer research, but it is still challenging to achieve uniform and durable distribution of payloads throughout the solid tumor owing to the tumor microenvironment heterogeneity. Herein, a living drug sprinkle biohybrid (YB1-HCNs) was constructed by hitching acid/enzyme-triggered detachable nanoparticles (HCNs) backpack on the surface of metabolic oligosaccharide-engineered oncolytic bacteria YB1. Along with the process of tumor penetration by bacterial hypoxia navigation, YB1-HCNs responsively and continuously release HCNs, achieving a uniform distribution of loaded agents throughout the tumor.

View Article and Find Full Text PDF

Cognitive frailty is increasingly prevalent among elderly patients, heightening the risks of dementia, disability, and mortality. This demographic also faces a rising incidence of lung cancer, and cognitive frailty complicates rehabilitation efforts. Research on cognitive frailty in elderly lung cancer patients is still emerging.

View Article and Find Full Text PDF
Article Synopsis
  • Tumorigenesis is influenced by numerous mutations, particularly cancer-driving nucleotides (CDNs), which are essential for understanding and treating cancer patients.
  • Despite a small number of known CDNs, the study suggests that the recurrence of advantageous mutations in a large population can help identify nearly all CDNs.
  • Identifying the complete set of CDNs would enhance our understanding of tumor evolution and improve the effectiveness of targeted therapies against cancer.
View Article and Find Full Text PDF

A central goal of cancer genomics is to identify, in each patient, all the cancer-driving mutations. Among them, point mutations are referred to as cancer-driving nucleotides (CDNs), which recur in cancers. The companion study shows that the probability of recurrent hits in patients would decrease exponentially with ; hence, any mutation with ≥ 3 hits in The Cancer Genome Atlas (TCGA) database is a high-probability CDN.

View Article and Find Full Text PDF

Motile organisms can expand into new territories and increase their fitness, while nonmotile viruses usually depend on host migration to spread across long distances. In general, faster host motility facilitates virus transmission. However, recent ecological studies have also shown that animal host migration can reduce viral prevalence by removing infected individuals from the migratory group.

View Article and Find Full Text PDF

Objectives: Prostate cancer holds the second-highest incidence rate among all male malignancies, with a noticeable scarcity of effective treatment approaches. The REST Corepressor 1 (RCOR1) protein exhibits elevated expression across various tumors, acting as an oncogene. Nevertheless, its functions and mechanisms in prostate cancer have yet to be documented.

View Article and Find Full Text PDF

Background: RNA splicing plays significant roles in fundamental biological activities. However, our knowledge about the roles of alternative splicing and underlying mechanisms during spermatogenesis is limited.

Results: Here, we report that Serine/arginine-rich splicing factor 2 (SRSF2), also known as SC35, plays critical roles in alternative splicing and male reproduction.

View Article and Find Full Text PDF

Alternative splicing (AS) plays significant roles in a multitude of fundamental biological activities. AS is prevalent in the testis, but the regulations of AS in spermatogenesis is only little explored. Here, we report that Serine/arginine-rich splicing factor 1 (SRSF1) plays critical roles in alternative splicing and male reproduction.

View Article and Find Full Text PDF

The robust regulation of the cell cycle is critical for the survival and proliferation of bacteria. To gain a comprehensive understanding of the mechanisms regulating the bacterial cell cycle, it is essential to accurately quantify cell-cycle-related parameters and to uncover quantitative relationships. In this paper, we demonstrate that the quantification of cell size parameters using microscopic images can be influenced by software and by the parameter settings used.

View Article and Find Full Text PDF

Synthetic biology provides a new paradigm for life science research ("build to learn") and opens the future journey of biotechnology ("build to use"). Here, we discuss advances of various principles and technologies in the mainstream of the enabling technology of synthetic biology, including synthesis and assembly of a genome, DNA storage, gene editing, molecular evolution and de novo design of function proteins, cell and gene circuit engineering, cell-free synthetic biology, artificial intelligence (AI)-aided synthetic biology, as well as biofoundries. We also introduce the concept of quantitative synthetic biology, which is guiding synthetic biology towards increased accuracy and predictability or the real rational design.

View Article and Find Full Text PDF

Current strategies to improve the throughput of continuous directed evolution technologies often involve complex mechanical fluid-controlling system or robotic platforms, which limits their popularization and application in general laboratories. Inspired by our previous study on bacterial range expansion, in this study, we report a system termed SPACE for rapid and extensively parallelizable evolution of biomolecules by introducing spatial dimensions into the landmark phage-assisted continuous evolution system. Specifically, M13 phages and chemotactic Escherichia coli cells were closely inoculated onto a semisolid agar.

View Article and Find Full Text PDF

Whole-genome recoding has been shown to enable nonstandard amino acids, biocontainment and viral resistance in bacteria. Here we take the first steps to extend this to human cells demonstrating exceptional base editing to convert TAG to TAA for 33 essential genes via a single transfection, and examine base-editing genome-wide (observing ~40 C-to-T off-target events in essential gene exons). We also introduce GRIT, a computational tool for recoding.

View Article and Find Full Text PDF

Grazing is one of the main human disturbance factors in alpine grassland on the Qinghai-Tibet Plateau (QTP), which can directly or indirectly influence the community structures and ecological functions of grassland ecosystems. However, despite extensive field grazing experiments, there is currently no consensus on how different grazing management approaches affect alpine grassland diversity, soil carbon (C), and nitrogen (N). Here, we conducted a meta-analysis of 70 peer-reviewed publications to evaluate the general response of 11 variables related to alpine grassland ecosystems plant diversity and ecological functions to grazing.

View Article and Find Full Text PDF

Accurate precipitation data are crucial for hydrological, meteorological, and ecological research. However, it is difficult to obtain high-precision and high-resolution spatiotemporal distributions of precipitation in remote mountain regions with complex topography and sparse rain gauges. In addition, the spatial resolutions of existing satellite precipitation products are too coarse to apply them in the mountain regions with great spatiotemporal heterogeneity.

View Article and Find Full Text PDF

Patulin is a secondary metabolite mainly secreted by fungi and is the most common mycotoxin found in apples and apple-based products. For the past few years, numerous studies suggested the wide distribution and toxicity of patulin. In this study, we investigated the toxic effect of patulin on mouse oocytes and its possible mechanisms.

View Article and Find Full Text PDF

The engineered "obligate" anaerobic strain YB1 shows a prominent ability to repress tumor growth and metastasis, which has great potential as a novel cancer immunotherapy. However, the antitumor mechanism of YB1 remains unelucidated. To resolve the proteome dynamics induced by the engineered bacteria, we applied tumor temporal proteome profiling on murine bladder tumors after intravenous injection of either YB1 or PBS as a negative control.

View Article and Find Full Text PDF

Mechanical rupture, or lysis, of the cytoplasmic membrane is a common cell death pathway in bacteria occurring in response to β-lactam antibiotics. A better understanding of the cellular design principles governing the susceptibility and response of individual cells to lysis could indicate methods of potentiating β-lactam antibiotics and clarify relevant aspects of cellular physiology. Here, we take a single-cell approach to bacterial cell lysis to examine three cellular features-turgor pressure, mechanosensitive channels, and cell shape changes-that are expected to modulate lysis.

View Article and Find Full Text PDF

Microbes in nature often live in dense and diverse communities exhibiting a variety of spatial structures. Microbial range expansion is a universal ecological process that enables populations to form spatial patterns. It can be driven by both passive and active processes, for example, mechanical forces from cell growth and bacterial motility.

View Article and Find Full Text PDF

Transcription termination is one of the least understood processes of gene expression. As the prototype model for transcription studies, the single-subunit T7 RNA polymerase (RNAP) is known to respond to two types of termination signals, but the mechanism underlying such termination, especially the specific elements of the polymerase involved, is still unclear, due to a lack of knowledge with respect to the structure of the termination complex. Here we applied phage-assisted continuous evolution to obtain variants of T7 RNAP that can bypass the typical class I T7 terminator with stem-loop structure.

View Article and Find Full Text PDF

Synthetic biology research and technology translation has garnered increasing interest from the governments and private investors in Asia, where the technology has great potential in driving a sustainable bio-based economy. This Perspective reviews the latest developments in the key enabling technologies of synthetic biology and its application in bio-manufacturing, medicine, food and agriculture in Asia. Asia-centric strengths in synthetic biology to grow the bio-based economy, such as advances in genome editing and the presence of biofoundries combined with the availability of natural resources and vast markets, are also highlighted.

View Article and Find Full Text PDF

As an important part of the wetland ecosystem, alpine wetland is not only one of the most important ecological water conservation areas in the Qinghai-Tibet Plateau region, but is also an effective regulator of the local climate. In this study, using three machine learning algorithms to extract wetland, we employ the landscape ecological index to quantitatively analyze the evolution of landscape patterns and grey correlation to analyze the driving factors of Zoige wetland landscape pattern change from 1995 to 2020. The following results were obtained.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session39c8g7akbub4nb41d2l2l7acd93h5gsp): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once