Mechanically durable transparent electrodes are essential for achieving long-term stability in flexible optoelectronic devices. Furthermore, they are crucial for applications in the fields of energy, display, healthcare, and soft robotics. Conducting meshes represent a promising alternative to traditional, brittle, metal oxide conductors due to their high electrical conductivity, optical transparency, and enhanced mechanical flexibility.
View Article and Find Full Text PDFPreviously released pear genomes contain a plethora of gaps and unanchored genetic regions. Here, we report a telomere-to-telomere (T2T) gap-free genome for the red-skinned pear, 'Yunhong No. 1' (YH1; ), which is mainly cultivated in Yunnan Province (southwest China), the pear's primary region of origin.
View Article and Find Full Text PDFIatrogenic bile duct injury remains the most severe complication of gallbladder surgeries. To reduce post-operation complication, we introduce an improved approach for bile duct injury repairment, named transhepatic percutaneous cholangial drainage (TPCD) which combined with end-to-end biliary anastomosis. Clinical data obtained from 12 patients between February 2012 and May 2022 were retrospectively analyzed.
View Article and Find Full Text PDFPurpose: Recent studies have demonstrated that kinetochore-associated protein 1 (KNTC1) plays a significant role in the carcinogenesis of numerous types of cancer. This study aimed to explore the role and possible mechanisms of KNTC1 in the development of pancreatic cancer.
Methods And Results: We analyzed differentially expressed genes by RNA sequencing in three paired pancreatic cancer and para-cancerous tissue samples and found that the expression of KNTC1 was significantly upregulated in pancreatic cancer.
Greenhouse vegetable production (GVP) has grown rapidly and has become a major force for cucumber production in China. In highly intensive GVP systems, excessive fertilization results in soil acidification, increasing Cd accumulation and oxidative stress damage in vegetables as well as increasing health risk of vegetable consumers. Therefore, enhancing antioxidant capacity and activating the expression level of Cd transporter genes seem to be feasible solutions to promote plant resistance to Cd stress and to reduce accumulated Cd concentration.
View Article and Find Full Text PDFAdvantages such as strong signal strength, resistance to photobleaching, tunable fluorescence emissions, high sensitivity, and biocompatibility are the driving forces for the application of fluorescent nanoparticles (FNPs) in cancer diagnosis and therapy. In addition, the large surface area and easy modification of FNPs provide a platform for the design of multifunctional nanoparticles (MFNPs) for tumor targeting, diagnosis, and treatment. In order to obtain better targeting and therapeutic effects, it is necessary to understand the properties and targeting mechanisms of FNPs, which are the foundation and play a key role in the targeting design of nanoparticles (NPs).
View Article and Find Full Text PDFNanoparticle-based theranostics combines tumor imaging and cancer therapy in one platform, but the synthesis of theranostic agents is impeded by chemical groups on the surface and the size and morphology of the components. Strategies to construct a multifunctional platform for bioimaging and photothermal therapy (PTT) are urgently needed. A new upconversion-magnetic agent (FeCUPs) based on hollow carbon spheres, which is both a photothermal agent and a dual carrier of luminescent and magnetic nanoparticles, provides an effective approach for tumor elimination.
View Article and Find Full Text PDFEfficient tumor targeting has been a great challenge in the clinic for a very long time. The traditional targeting methods based on enhanced permeability and retention (EPR) effects show only an ≈5% targeting rate. To solve this problem, a new graphene-based tumor cell nuclear targeting fluorescent nanoprobe (GTTN), with a new tumor-targeting mechanism, is developed.
View Article and Find Full Text PDFSize, shape, and protein corona play a key role in cellular uptake and removal mechanisms of gold nanoparticles (Au NPs). The 15 nm nanoparticles (NP1), the 45 nm nanoparticles (NP2), and the rod-shaped nanoparticles (NR) enter into cells via a receptor-mediated endocytosis (RME) pathway. The star-shaped nanoparticles (NS) adopt not only clathrin-mediated, but also caveolin-mediated endocytosis pathways.
View Article and Find Full Text PDFZinc oxide nanomaterials have become common food additives in recent years. Casein phosphopeptides (CPP) and vitamin C (VC) are used as functional food additives together with ZnO nanoparticles (ZnO NPs) in many commercial foods. Our previous studies showed that VC can increase the cytotoxicity induced by ZnO NPs both and , while CPP can have a cytoprotective effect against oxidative stress induced by ZnO NPs.
View Article and Find Full Text PDFWith the rapid development of nanotherapy, concerns surrounding the possible use of nanomaterials-mediated immunomodulation are growing. Thus, evaluating the effects of novel materials for potential application in nanotherapy is essential. Herein, we studied the effects of TiO2-nanorods (NRs) on the immune function and their potential application in immunotherapy.
View Article and Find Full Text PDFSpecific targeting of tumor tissues is essential for tumor imaging and therapeutics but remains challenging. Here, we report an unprecedented method using synthetic sulfonic-graphene quantum dots (sulfonic-GQDs) to exactly target the cancer cell nuclei in vivo without any bio- ligand modification, with no intervention in cells of normal tissues. The key factor for such selectivity is the high interstitial fluid pressure (IFP) in tumor tissues, which allows the penetration of sulfonic-GQDs into the plasma membrane of tumor cells.
View Article and Find Full Text PDFNanotechnology has been a rapidly developing field in the past few decades, resulting in the more and more exposure of nanomaterials to human. The increased applications of nanomaterials for industrial, commercial and life purposes, such as fillers, catalysts, semiconductors, paints, cosmetic additives and drug carriers, have caused both obvious and potential impacts on human health and environment. Nanotoxicology is used to study the safety of nanomaterials and has grown at the historic moment.
View Article and Find Full Text PDFApplication of nanotechnology and nanomaterials in cancer therapeutics has attracted much attention in recent years. Nano titanium dioxide is one of the most important inorganic functional materials. Cellular toxicity of pH-controlled antitumor drug release system of titanium dioxide nanotubes (TiO2-NTs) in pancreatic cancer cells (SW1990) was evaluated in this paper.
View Article and Find Full Text PDFTo date, considerable effort has been devoted to determine the potential toxicity of nanoparticles to cells and organisms. However, determining the mechanism of cytotoxicity induced by different types of nanoparticles remains challenging. Herein, typically low toxicity nanomaterials were used as a model to investigate the mechanism of cytotoxicity induced by low toxicity nanomaterials.
View Article and Find Full Text PDFAt present, safety evaluation standards for nanofood additives are made based on the toxic effects of a single additive. Since the size, surface properties and chemical nature influence the toxicity of nanomaterials, the toxicity may have dramatically changed when nanomaterials are used as food additives in a complex system. Herein, we investigated the combined toxicity of zinc oxide nanoparticles (ZnO NPs) and vitamin C (Vc, ascorbic acid).
View Article and Find Full Text PDFGraphene quantum dots (GQDs) have various alluring properties and potential applications, but their large-scale applications are limited by current synthetic methods that commonly produce GQDs in small amounts. Moreover, GQDs usually exhibit polycrystalline or highly defective structures and thus poor optical properties. Here we report the gram-scale synthesis of single-crystalline GQDs by a facile molecular fusion route under mild and green hydrothermal conditions.
View Article and Find Full Text PDFAppl Biochem Biotechnol
December 2013
TiO(2) nanotubes (TiO(2)-NTs) are currently attracting a high interest because the intrinsic properties of TiO(2) provide the basis for many outstanding functional features. Herein, we focus on the cytotoxicity and sublocation of TiO(2)-NTs in neural stem cells (NSCs). The cytotoxicity of TiO(2)-NTs is investigated using the methyl tetrazolium cytotoxicity and reactive oxygen species assay, the apoptosis assay by flow cytometry.
View Article and Find Full Text PDF