Publications by authors named "Chenhui Zeng"

WD repeat domain 5 (WDR5) is a prominent target for pharmacological inhibition in cancer through its scaffolding role with various oncogenic partners such as MLL and MYC. WDR5-related drug discovery efforts center on blocking these binding interfaces or degradation have been devoted to developing small-molecule inhibitors or degraders of WDR5 for cancer treatment. Nevertheless, the precise role of WDR5 in these cancer cells has not been well elucidated genetically.

View Article and Find Full Text PDF

Polycomb repressive complex 2 (PRC2) consists of three core subunits, EZH2, EED and SUZ12, and plays pivotal roles in transcriptional regulation. The catalytic subunit EZH2 methylates histone H3 lysine 27 (H3K27), and its activity is further enhanced by the binding of EED to trimethylated H3K27 (H3K27me3). Small-molecule inhibitors that compete with the cofactor S-adenosylmethionine (SAM) have been reported.

View Article and Find Full Text PDF

The coexisting post-translational modifications (PTMs) on histone H3 N-terminal tails were known to crosstalk between each other, indicating their interdependency in the epigenetic regulation pathways. H3K36 methylation, an important activating mark, was recently reported to antagonize with PRC2-mediated H3K27 methylation with possible crosstalk mechanism during transcription regulation process. On the basis of our previous studies, we further integrated RP/HILIC liquid chromatography with MRM mass spectrometry to quantify histone PTMs from various mouse organs, especially the combinatorial K27/K36 marks for all three major histone H3 variants.

View Article and Find Full Text PDF

Stearoyl-CoA desaturase 1 (SCD1) plays a role in the development of obesity and related conditions, such as insulin resistance, and potentially also in neurological and heart diseases. The activity of SCD1 can be monitored using the desaturation index (DI), the ratio of product (16:1n-7 and 18:1n-9) to precursor (16:0 and 18:0) fatty acids. Here, different analytical strategies were applied to identify the method which best supports SCD1 biology.

View Article and Find Full Text PDF

The Liver Toxicity Biomarker Study is a systems toxicology approach to discover biomarkers that are indicative of a drug's potential to cause human idiosyncratic drug-induced liver injury. In phase I, the molecular effects in rat liver and blood plasma induced by tolcapone (a "toxic" drug) were compared with the molecular effects in the same tissues by dosing with entacapone (a "clean" drug, similar to tolcapone in chemical structure and primary pharmacological mechanism). Two durations of drug exposure, 3 and 28 days, were employed.

View Article and Find Full Text PDF

Ximelagatran was developed for the prevention and treatment of thromboembolic conditions. However, in long-term clinical trials with ximelagatran, the liver injury marker, alanine aminotransferase (ALT) increased in some patients. Analysis of plasma samples from 134 patients was carried out using proteomic and metabolomic platforms, with the aim of finding predictive biomarkers to explain the ALT elevation.

View Article and Find Full Text PDF

Drug-induced liver injury (DILI) is the primary adverse event that results in withdrawal of drugs from the market and a frequent reason for the failure of drug candidates in development. The Liver Toxicity Biomarker Study (LTBS) is an innovative approach to investigate DILI because it compares molecular events produced in vivo by compound pairs that (a) are similar in structure and mechanism of action, (b) are associated with few or no signs of liver toxicity in preclinical studies, and (c) show marked differences in hepatotoxic potential. The LTBS is a collaborative preclinical research effort in molecular systems toxicology between the National Center for Toxicological Research and BG Medicine, Inc.

View Article and Find Full Text PDF

A subset of the compound repository for lead identification at Biogen Idec was characterized for its chemical stability over a 3-year period. Compounds were stored at 4 degrees C as 10 mM DMSO stocks, and a small subset of compounds was stored as lyophilized dry films. Compound integrity of 470 discrete compounds (Compound Set I) and 1917 combinatorial chemistry-derived compounds (Compound Set II) was evaluated by liquid chromatography/mass spectrometry from the time of acquisition into the library collection and after 3 years of storage.

View Article and Find Full Text PDF