Publications by authors named "Chenhui Su"

Metal halide perovskite light-emitting diodes (PeLEDs) are ideal for high-resolution displays due to their tunable emission, narrow spectra, and low-cost processing. Colloidal FAPbBr perovskite quantum dots (PeQDs) enhance radiative recombination, making them efficient for pure-green PeLEDs. However, their low stability and surface defects limit their practical application.

View Article and Find Full Text PDF

In the field of structural health monitoring, Lamb Wave has become one of the most widely used inspection tools due to its advantages of wide detection range and high sensitivity. In this paper, a new damage detection method for honeycomb sandwich structures based on frequency spectrum and Lamb Wave Tomography is proposed. By means of simulation and experiment, a certain number of sensors were placed on the honeycomb sandwich plate to stimulate and receive the signals in both undamaged and damaged cases.

View Article and Find Full Text PDF

The phase-to-height imaging model, as a three-dimensional (3D) measurement technology, has been commonly applied in fringe projection to assist surface profile measurement, where the efficient and accurate calculation of phase plays a critical role in precise imaging. To deal with multiple extra coded patterns and 2π jump error caused to the existing absolute phase demodulation methods, a novel method of phase demodulation is proposed based on dual variable-frequency (VF) coded patterns. In this paper, the frequency of coded fringe is defined as the number of coded fringes within a single sinusoidal fringe period.

View Article and Find Full Text PDF

In this work, we demonstrate the application of differential reflectance spectroscopy (DRS) to monitor the growth of molybdenum disulfide (MoS) using chemical vapor deposition (CVD). The growth process, optical properties, and structure evolution of MoS were recorded by in-situ DRS. Indeed, blue shifts of the characteristic peak B were discussed with the decrease of temperature.

View Article and Find Full Text PDF

In order to deal with the problem of composite damage location, an imaging technique based on differential signal and Lamb wave tomography was proposed. Firstly, the feasibility of the technique put forward was verified by simulation. In this process, the composite model was regularly set down by the circular sensor array, with each sensor acting as an actuator in sequence to generate Lamb waves.

View Article and Find Full Text PDF

In this paper, based on two additional phase-coding patterns, an improved phase demodulation method is proposed. First, six equally spaced coding phases in the interval [$ - \pi $-π, $\pi $π] are embedded in different periods of the coded fringes following a certain sequence. Subsequently, since a group of phase orders can be uniquely determined by the four adjacent coding phases, the phase-order map of the object can be generated.

View Article and Find Full Text PDF

The in-situ observation is of great significance to the study of the growth mechanism and controllability of two-dimensional transition metal dichalcogenides (TMDCs). Here, the differential reflectance spectroscopy (DRS) was performed to monitor the growth of molybdenum disulfide (MoS) on a SiO/Si substrate prepared by chemical vapor deposition (CVD). A home-built in-situ DRS setup was applied to monitor the growth of MoS in-situ.

View Article and Find Full Text PDF

Fringe projection profilometry (FPP) technology is an important method for 3D reconstruction. In this paper, we proposed a flexible calibration method of an FPP system based on the imaging principle and geometrical structure of the system. The target coordinates are only related to its pixel coordinates and phase.

View Article and Find Full Text PDF