In various countries worldwide, the issue of wastewater contamination poses a significant threat due to its intricate composition of heavy metals, organic dyes, and microorganisms, thereby complicating the purification process. Consequently, researchers have expressed considerable interest in materials capable of eliminating organic, heavy metal, and microbial pollutants. This study focuses on the fabrication of a water purification membrane (PDA/ZnO-NWs/PVDF) with a hierarchical structure and the ability to remove multiple pollutants.
View Article and Find Full Text PDFPolymers (Basel)
September 2023
Electrocardiogram (ECG) electrodes are important sensors for detecting heart disease whose performance determines the validity and accuracy of the collected original ECG signals. Due to the large drawbacks (e.g.
View Article and Find Full Text PDFElectrospun nanofiber acoustoelectric devices typically have a bandwidth in the range of 100-400 Hz, which limits their applications. This study demonstrates a novel device structure with tunable acoustoelectric bandwidth based on oriented electrospun polyacrylonitrile (PAN) nanofibers and slit electrodes. When the PAN nanofibers were arranged perpendicular to the slits, the devices had a much wider bandwidth than their parallel counterparts, while the latter had a bandwidth similar to that of randomly oriented nanofibers.
View Article and Find Full Text PDFConsiderable interest has been devoted to converting mechanical energy into electricity using polymer nanofibres. In particular, piezoelectric nanofibres produced by electrospinning have shown remarkable mechanical energy-to-electricity conversion ability. However, there is little data for the acoustic-to-electric conversion of electrospun nanofibres.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2015
Electrospun polyvinylidene fluoride (PVDF) nanofiber webs have shown great potential in making mechanical-to-electrical energy conversion devices. Previously, polyvinylidene fluoride (PVDF) nanofibers were produced either using near-field electrospinning (spinning distance<1 cm) or conventional electrospinning (spinning distance>8 cm). PVDF fibers produced by an electrospinning at a spinning distance between 1 and 8 cm (referred to as "short-distance" electrospinning in this paper) has received little attention.
View Article and Find Full Text PDF