Publications by authors named "Chenhao Bu"

In Populus simonii, the N-terminal acetyltransferase subunit gene PsiNAA20 was induced by salt stress and osmotic stress and regulates root development. The spatiotemporal specificity of PsiNAA20-interacting gene expression and translation efficiency suggested dual functions in poplar root development under salt stress and osmotic stress.

View Article and Find Full Text PDF

Background: The expression of biological traits is modulated by genetics as well as the environment, and the level of influence exerted by the latter may vary across characteristics. Photosynthetic traits in plants are complex quantitative traits that are regulated by both endogenous genetic factors and external environmental factors such as light intensity and CO concentration. The specific processes impacted occur dynamically and continuously as the growth of plants changes.

View Article and Find Full Text PDF

Leaf margins are complex plant morphological features that contribute to leaf shape diversity, which affects plant structure, yield, and adaptation. Although several leaf margin regulators have been identified to date, the genetic basis of their natural variation has not been fully elucidated. In this study, we profiled two distinct leaf morphology types (serrated and smooth) using the persistent homology mathematical framework (PHMF) in two poplar species (Populus tomentosa and Populus simonii, respectively).

View Article and Find Full Text PDF
Article Synopsis
  • Lead (Pb) is highly toxic, and the study focuses on the role of long non-coding RNAs (lncRNAs) in regulating Pb uptake in the woody plant species Populus tomentosa.
  • A total of 226 Pb-induced differentially expressed lncRNAs were identified, influencing various metabolic processes and regulating genes involved in carbon metabolism and plant growth.
  • The key regulatory module identified involves the interaction between lncRNA PMAT, transcription factor PtoMYB46, and auxin response factor PtoARF2, which together help manage Pb tolerance and promote growth in these plants, suggesting potential for improving bioremediation strategies.
View Article and Find Full Text PDF

Soil nutrient restrictions are the main environmental conditions limiting plant growth, development, yield, and quality. Phosphorus (P), an essential macronutrient, is one of the most significant factors that vastly restrains the growth and development of plants. Although the total P is rich in soil, its bio-available concentration is still unable to meet the requirements of plants.

View Article and Find Full Text PDF

Despite the important role the circadian clock plays in numerous critical physiological responses in plants, such as hypocotyl elongation, leaf movement, stomatal opening, flowering, and stress responses, there have been no investigations into the effect of the circadian clock on physiological and transcriptional networks under salt stress. Ulmus pumila L. has been reported to tolerate 100-150 mM NaCl treatment.

View Article and Find Full Text PDF

Cytokinins are important for in vitro shoot regeneration in plants. Cytokinin N-glucosides are produced via an irreversible glycosylation pathway, which regulates the endogenous cytokinin content. Although cytokinin N-glucoside pathways have been uncovered in higher plants, no regulator has been identified to date.

View Article and Find Full Text PDF

L. is an excellent afforestation and biofuel tree that produces high-quality wood, rich in starch. In addition, is highly adaptable to adverse environmental conditions, which is conducive to its utilization for vegetating saline soils.

View Article and Find Full Text PDF

Transposable elements (TEs) and their reverse complementary sequence pairs (RCPs) are enriched around loci that produce circular RNAs (circRNAs) in plants. However, the function of these TE-RCP pairs in modulating circRNA expression remains elusive. Here, we identified 4609 circRNAs in poplar (Populus tomentosa) and showed that miniature inverted repeat transposable elements (MITEs)-RCPs were enriched in circRNA flanking regions.

View Article and Find Full Text PDF

High-temperature stress is a threat to plant development and survival. Long noncoding RNAs (lncRNAs) participate in plant stress responses, but their functions in the complex stress response network remain unknown. Poplar contributes to terrestrial ecological stability.

View Article and Find Full Text PDF

Cytokinins play important roles in the growth and development of plants. Physiological and photosynthetic characteristics are common indicators to measure the growth and development in plants. However, few reports have described the molecular mechanisms of physiological and photosynthetic changes in response to cytokinin, particularly in woody plants.

View Article and Find Full Text PDF

A stable leaf temperature provides plants with a suitable microenvironment for photosynthesis. With global warming, extreme temperatures have become more frequent and severe; therefore, it is increasingly important to understand the fine regulation of leaf temperature under heat stress. In this study, five poplar species (Populus tomentosa, Populus simonii, Populus euphratica, Populus deltoides and Populus trichocarpa) that live in different native environments were used to analyze leaf temperature regulation.

View Article and Find Full Text PDF

Complex RNA transcription and processing produces a diverse range catalog of long noncoding RNAs (lncRNAs), important biological regulators that have been implicated in osmotic stress responses in plants. Promoter upstream transcript (PROMPT) lncRNAs share some regulatory elements with the promoters of their neighbouring protein-coding genes. However, their function remains unknown.

View Article and Find Full Text PDF