Publications by authors named "Chengzhi Yu"

The Klebsiella pneumoniae (K. pneumoniae, Kp) populations carrying both resistance-encoding and virulence-encoding mobile genetic elements (MGEs) significantly threaten global health. In this study, we identified a new anti-CRISPR gene (acrIE10) on a conjugative plasmid with self-target sequence in K.

View Article and Find Full Text PDF

Forkhead box L2 (FOXL2) is an indispensable key regulator of female follicular development, and it plays important roles in the morphogenesis, proliferation, and differentiation of follicle granulosa cells, such as establishing normal estradiol signaling and regulating steroid hormone synthesis. Nevertheless, the effects of FOXL2 on granulosa cell morphology and the underlying mechanism remain unknown. Using FOXL2 ChIP-seq analysis, we found that FOXL2 target genes were significantly enriched in the actin cytoskeleton-related pathways.

View Article and Find Full Text PDF

Plant pattern-recognition receptors perceive microorganism-associated molecular patterns to activate immune signalling. Activation of the pattern-recognition receptor kinase CERK1 is essential for immunity, but tight inhibition of receptor kinases in the absence of pathogen is crucial to prevent autoimmunity. Here we find that the U-box ubiquitin E3 ligase OsCIE1 acts as a molecular brake to inhibit OsCERK1 in rice.

View Article and Find Full Text PDF

Given the escalating global warming and the intense nature of modern poultry production, layers are becoming increasingly susceptible to heat stress. This stress disrupts the physiological processes of layers, which leads to reduced productivity and welfare. To address this issue, it is crucial to first evaluate the stress response systematically.

View Article and Find Full Text PDF

Influenza virus and SARS-CoV-2 virus are two important viruses that cause respiratory tract diseases. The high-frequency mutation of the two types of viruses leads to failure of the durable immune protection of vaccines, meanwhile it also poses continuous challenges to the development of antiviral drugs. Traditional Chinese medicine contains large number of biologically active compounds, and some of them contain broad-spectrum antiviral ingredients.

View Article and Find Full Text PDF

Canonical bacterial transcription activators bind to their cognate cis elements at the upstream of transcription start site (TSS) in a form of dimer. Caulobacter crescentus GcrA, a non-canonical transcription activator, can activate transcription from promoters harboring its cis element at the upstream or downstream of TSS in a form of monomer. We determined two cryo-EM structures of C.

View Article and Find Full Text PDF

Efficient and accurate termination is required for gene transcription in all living organisms. Cellular RNA polymerases in both bacteria and eukaryotes can terminate their transcription through a factor-independent termination pathway-called intrinsic termination transcription in bacteria-in which RNA polymerase recognizes terminator sequences, stops nucleotide addition and releases nascent RNA spontaneously. Here we report a set of single-particle cryo-electron microscopy structures of Escherichia coli transcription intrinsic termination complexes representing key intermediate states of the event.

View Article and Find Full Text PDF

Advanced oxidation processes (AOPs) demonstrate great micropollutant degradation efficiency. In this study, CuFeO was successfully used to activate peracetic acid (PAA) to remove Rhodamine B. Acetyl(per)oxyl radicals were the dominant species in this novel system.

View Article and Find Full Text PDF

Membrane technologies have broad potential in methods for separating, collecting, storing, and utilizing urine collected from toilets. Recovering urine from toilets for resource utilization instead of treating it in a sewage treatment plant not only reduces extra energy consumption for the degradation of N and P but also saves energy in chemical fertilizer production, which will contribute to carbon emission reduction of 12.19-17.

View Article and Find Full Text PDF

Background: Suboptimal health status (SHS) is a reversible state between ideal health and illness and it can be effectively reversed by risk prediction, disease prevention, and personalized medicine under the global background of predictive, preventive, and personalized medicine (PPPM) concepts. More and more Chinese nurses have been troubled by psychological symptoms (PS). The correlation between PS and SHS is unclear in nurses.

View Article and Find Full Text PDF

Fructose was utilized as an additional co-substrate to systematically investigate the molecular mechanism of its boosting effect for the degradation of refractory dye reactive black 5 (RB5) by a natural bacterial flora DDMZ1. A decolorizing rate of 98% was measured for sample YE + FRU(200) (with 3 g/L fructose additionally to yeast extract medium, 10% (v/v) inoculation size of flora DDMZ1, 200 mg/L RB5) after 48 h. This result was 21% and 77%, respectively, higher than those of samples with only yeast extract or only fructose.

View Article and Find Full Text PDF

Four sugar sources were used as co-substrates to promote the degradation of a selected refractory dye reactive black 5 (RB5) by the natural bacterial flora DDMZ1. The boosting performance of the four sugar sources on RB5 decolorization ranked as: fructose > sucrose > glucose > glucose + fructose. Kinetic results of these four co-metabolism systems agreed well with a first-order kinetic model.

View Article and Find Full Text PDF

In this study, a newly screened mixed bacterial flora DDMY2 had high decolorization capacity for anthraquinone dye reactive blue 19 (RB19) and the decolorization efficiency of 300 mg L RB19 could reach up to 98% within 48 h in the presence of tea residue. Results indicated that RB19 could be efficiently decolorized by flora DDMY2 in wide ranges of pH values (5.0-9.

View Article and Find Full Text PDF

Bacteriophages typically hijack the host bacterial transcriptional machinery to regulate their own gene expression and that of the host bacteria. The structural basis for bacteriophage protein-mediated transcription regulation-in particular transcription antitermination-is largely unknown. Here we report the 3.

View Article and Find Full Text PDF

Conventional microbial treatments are challenged by new synthetic refractory dyes. In this work, tea residue was found serving as an effective activator to boost the decolorization performance of anthraquinone dye (reactive blue 19, RB19) by a new bacterial flora DDMY2. The unfermented West Lake Longjing tea residue showed the best enhancement performance.

View Article and Find Full Text PDF

In this work, the performance and mechanism for the boosting effects of fructose as an additional co-metabolite towards the biological treatment of reactive black 5 were systematically investigated. A decolorization efficiency of 98% was obtained in sample FRU200 (with 3 g/L fructose added based on 3 g/L yeast extract), which was 21% higher than that without fructose. Several intermediates with low molecular weight generated in sample FRU200 and different metabolic pathways were deduced.

View Article and Find Full Text PDF

Heart failure has become one of the top causes of death worldwide. It is increasing evidence that lncRNAs play important roles in the pathology processes of multiple cardiovascular diseases. Additionally, lncRNAs can function as ceRNAs by sponging miRNAs to affect the expression level of mRNAs, implicating in numerous biological processes.

View Article and Find Full Text PDF

In this study, performance of hydrolysis acidification process treating simulated dyeing wastewater containing azo and anthraquinone dyes in different stages was investigated. The decolorization ratio, COD removal ratio, BOD/COD value, and volatile fatty acids (VFAs) production were almost better in stage 1 than that in stage 2. Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GC-MS) confirmed the biodegradation of Reactive Black 5 (RB5) and Remazol Brilliant Blue R (RBBR) in hydrolysis acidification process.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized pathologically by the abundance of senile plaques and neurofibrillary tangles in the brain. We synthesized over 1200 novel gamma-secretase modulator (GSM) compounds that reduced Abeta(42) levels without inhibiting epsilon-site cleavage of APP and Notch, the generation of the APP and Notch intracellular domains, respectively. These compounds also reduced Abeta(40) levels while concomitantly elevating levels of Abeta(38) and Abeta(37).

View Article and Find Full Text PDF

This unit presents protocols for the synthesis and characterization of nucleosides with unnatural bases in order to develop bases for the expansion of the genetic alphabet or for nonselective pairing opposite natural bases. Protocols describe the design, synthesis, and characterization of unnatural base pairs involving 1-beta-D-2-deoxyribosyl-N- and -C-nucleosides. Determination of the thermodynamic and kinetic parameters of unnatural nucleosides is accomplished by incorporation into oligonucleotides and subsequent evaluation as described herein.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers designed and synthesized nitrobenzylphosphoramide mustards that can be activated by E. coli nitroreductase, aiming to create effective anticancer prodrugs.
  • The compounds exhibited half-lives of 2.9 to 11.9 minutes at physiological conditions and showed varying levels of selective cytotoxicity based on their chemical structure, with certain isomers demonstrating potent effects in nitroreductase-expressing cells.
  • The most promising compound, acyclic 4-nitrobenzylphosphoramide mustard, showed extraordinary selectivity and low toxicity (IC(50) of 0.4 nM), indicating its potential for use in targeted enzyme prodrug therapies.
View Article and Find Full Text PDF

2-(2'-Hydroxyphenyl)benzoxazole (HBO) may be used as a model base pair to study solvation, duplex environment, and tautomerization within the major and minor groves of DNA duplexes. In its ground state, HBO possesses an enol moiety which may be oriented syn or anti relative to the imino nitrogen of the benzoxazole ring. In the absence of external hydrogen-bond donors and acceptors HBO exists as the internally hydrogen-bonded syn-enol, a mimic of the rare base pair tautomer found in DNA, which may be photoinduced to tautomerize and form the keto tautomer, a mimic of the dominant base pair tautomer.

View Article and Find Full Text PDF

Six unnatural nucleotides featuring fluorine-substituted phenyl nucleobase analogues have been synthesized, incorporated into DNA, and characterized in terms of the structure and replication properties of the self-pairs they form. Each unnatural self-pair is accommodated in B-form DNA without detectable structural perturbation, and all are thermally stable and selective to roughly the same degree. Furthermore, the efficiency of polymerase-mediated mispair synthesis is similar for each unnatural nucleotide in the template.

View Article and Find Full Text PDF

Cyclic and acyclic nitroaryl phosphoramide mustard analogues were activated by E. coli nitroreductase, an enzyme explored in GDEPT. The more active acyclic 4-nitrobenzyl phosphoramide mustard (7) showed 167 500x selective cytotoxicity toward nitroreductase-expressing V79 cells with an IC(50) as low as 0.

View Article and Find Full Text PDF