Publications by authors named "Chengzhen Ren"

Purpose: To compare the clinical efficacy of arthroscopic TightRope loop titanium button and clavicular hook plate in the treatment of acromioclavicular joint (ACJ) dislocation of Rockwood III/IV.

Methods: A retrospective analysis of patients with ACJ dislocation in our hospital from January 2018 to December 2020 was conducted. The patients were assigned to be treated with arthroscopic TightRope loop titanium button (TR group) or clavicular hook plate (HP group).

View Article and Find Full Text PDF

Background: 3D printing technology has become a research hotspot in the field of scientific research because of its personalized customization, maneuverability and the ability to achieve multiple material fabrications. The focus of this study is to use 3D printing technology to customize personalized poly L-lactic acid (PLLA) porous screws in orthopedic plants and to explore its effect on tendon-bone healing after anterior cruciate ligament (ACL) reconstruction.

Methods: Preparation of PLLA porous screws with good orthogonal pore structure by 3D printer.

View Article and Find Full Text PDF

Caveolin-1 (Cav-1) is overexpressed in aggressive and metastatic prostate cancer (PCa) and induces PCa cell proliferation. Androgens mediate lipid synthesis through acetyl-CoA carboxylase-1 (ACC1) and fatty acid synthase (FASN). We investigated the Cav-1-mediated lipid synthesis in the development of castration resistance, and identified novel therapeutic opportunities.

View Article and Find Full Text PDF

Androgen deprivation is the standard treatment for advanced prostate cancer (PCa), but most patients ultimately develop resistance and tumor recurrence. We found that MYB is transcriptionally activated by androgen deprivation therapy or genetic silencing of the androgen receptor (AR). MYB silencing inhibited PCa growth in culture and xenografts in mice.

View Article and Find Full Text PDF

In this study we report that expression of glioma pathogenesis-related protein 1 (GLIPR1) regulated numerous apoptotic, cell cycle, and spindle/centrosome assembly-related genes, including AURKA and TPX2, and induced apoptosis and/or mitotic catastrophe (MC) in prostate cancer (PCa) cells, including p53-mutated/deleted, androgen-insensitive metastatic PCa cells. Mechanistically, GLIPR1 interacts with heat shock cognate protein 70 (Hsc70); this interaction is associated with SP1 and c-Myb destabilization and suppression of SP1- and c-Myb-mediated AURKA and TPX2 transcription. Inhibition of AURKA and TPX2 using siRNA mimicked enforced GLIPR1 expression in the induction of apoptosis and MC.

View Article and Find Full Text PDF

Caveolin 1 (Cav-1) is a plasma membrane-associated protein with the capacity to modulate signaling activities in a context-dependent fashion. Interactions between Cav-1 and low-density lipoprotein receptor-related protein 6 (LRP6) were reported to be important for the regulation of Wnt-β-catenin (β-cat) signaling. Cav-1 also interacts with insulin and IGF-I receptors (IGF-IR/IR) and can stimulate IR kinase activities.

View Article and Find Full Text PDF

Previously we reported caveolin-1 (Cav-1) overexpression in prostate cancer cells and showed that it promotes prostate cancer progression. Here, we report that Cav-1 was overexpressed in 41.7% (15 of 36) of human high-grade prostatic intraepithelial neoplasia (HGPIN) specimens obtained during radical prostatectomies.

View Article and Find Full Text PDF

Downregulation of the proapoptotic p53 target gene glioma pathogenesis-related protein 1 (GLIPR1) occurs frequently in prostate cancer, but the functional meaning of this event is obscure. Here, we report the discovery of functional relationship between GLIPR1 and c-Myc in prostate cancer where c-Myc is often upregulated. We found that the expression of GLIPR1 and c-Myc were inversely correlated in human prostate cancer.

View Article and Find Full Text PDF

Background: GLIPR1 is upregulated by p53 in prostate cancer cells and has preclinical antitumor activity. A phase I clinical trial was conducted to evaluate the safety and activity of the neoadjuvant intraprostatic injection of GLIPR1 expressing adenovirus for intermediate or high-risk localized prostate cancer before radical prostatectomy (RP).

Methods: Eligible men had localized prostate cancer (T1-T2c) with Gleason score greater than or equal to 7 or prostate-specific antigen 10 ng/mL or more and were candidates for RP.

View Article and Find Full Text PDF

Caveolin-1 (Cav-1) is a major structural protein of caveolae, specialized plasma membrane invaginations that are involved in a cell-specific fashion in diverse cell activities such as molecular transport, cell adhesion, and signal transduction. In normal adult mammals, Cav-1 expression is abundant in mesenchyme-derived cells but relatively low in epithelial parenchyma. However, epithelial Cav-1 overexpression is associated with development and/or progression of many carcinomas.

View Article and Find Full Text PDF

Caveolin-1 (cav-1) and the cancer-promoting growth factors vascular endothelial growth factor (VEGF), transforming growth factor beta1 (TGF-beta1), and fibroblast growth factor 2 (FGF2) are often found to be upregulated in advanced prostate cancer and other malignancies. However, the relationship between cav-1 overexpression and growth factor upregulation remains unclear. This report presents, to our knowledge, the first evidence that in prostate cancer cells, a positive autoregulatory feedback loop is established in which VEGF, TGF-beta1, and FGF2 upregulate cav-1, and cav-1 expression, in turn, leads to increased levels of VEGF, TGF-beta1, and FGF2 mRNA and protein, resulting in enhanced invasive activities of prostate cancer cells, i.

View Article and Find Full Text PDF

Glioma pathogenesis-related protein 1 (GLIPR1), a novel p53 target gene, is down-regulated by methylation in prostate cancer and has p53-dependent and -independent proapoptotic activities in tumor cells. These properties suggest an important tumor suppressor role for GLIPR1, yet direct genetic evidence of a tumor suppressor function for GLIPR1 is lacking and the molecular mechanism(s), through which GLIPR1 exerts its tumor suppressor functions, has not been shown. Here, we report that the expression of GLIPR1 is significantly reduced in human prostate tumor tissues compared with adjacent normal prostate tissues and in multiple human cancer cell lines.

View Article and Find Full Text PDF

Our previous finding of RTVP1 (GLIPR1) as a p53 target gene with tumor suppressor functions prompted us to initiate a genome-wide sequence homology search for RTVP1/GLIPR1-like (GLIPR1L) genes. In this study we report the identification and characterization of a novel p53 target gene cluster that includes human RTVP1 (hRTVP-1) together with two GLIPR1L genes (GLIPR1L1 and GLIPR1L2) on human chromosome 12q21 and mouse Rtvp1 (mRTVP-1 or Glipr1) together with three Glipr1-like (Glipr1l) genes on mouse chromosome 10D1. GLIPR1L1 has two and GLIPR1L2 has five differentially spliced isoforms.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers found that the human RTVP-1 gene, which is related to p53, can induce cell death (apoptosis) in human prostate cancer cells.
  • They observed that RTVP-1 expression is lower in human prostate cancer samples compared to normal tissue at both the mRNA and protein levels.
  • The study also suggests that RTVP-1 may act as a tumor suppressor in prostate cancer due to specific epigenetic changes associated with its regulation.
View Article and Find Full Text PDF

Previously it has been reported that caveolin-1 (cav-1) has antiapoptotic activities in prostate cancer cells and functions downstream of androgenic stimulation. In this study, we demonstrate that cav-1 overexpression significantly reduced thapsigargin (Tg)-stimulated apoptosis. Examination of the phosphatidylinositol 3-kinase (PI3-K)/Akt signaling cascade revealed higher activities of PDK1 and Akt but not PI3-K in cav-1-stimulated cells compared to control cells.

View Article and Find Full Text PDF

Purpose: Caveolin-1 (cav-1), the major protein component of caveolae, plays an important role in multiple signaling pathways, molecular transport, and cellular proliferation and differentiation. The specific functions of cav-1/caveolae are highly cell and context dependent. We have previously shown that cav-1 expression is increased in metastatic human prostate cancer and that cav-1 cellular protein expression is predictive of recurrence of the disease after radical prostatectomy.

View Article and Find Full Text PDF

Using LoxP/Cre technology, we generated a knockout mouse homozygous for a null mutation in exon 2 of Cav1. In male Cav1-/- animals, we observed a dramatic increase in the incidence of urinary calcium stone formation. In 5-month-old male mice, the incidence of early urinary calculi was 67% in Cav1-/- mice compared to 19% in Cav1+/+ animals.

View Article and Find Full Text PDF
Article Synopsis
  • The mouse RTVP-1 gene, identified as a target of the tumor suppressor p53, shows promise in reducing tumor size and metastasis in prostate cancer when delivered via an adenoviral vector (AdmRTVP-1).
  • A single treatment with AdmRTVP-1 led to a significant decrease in primary tumor weight and lung metastasis, alongside increased apoptosis and reduced blood vessel formation in tumors.
  • The therapy also improved survival rates and enhanced immune cell infiltration and activity, suggesting potential for broader applications in cancer treatment through gene and immunotherapy.
View Article and Find Full Text PDF

Purpose: We summarize the literature regarding androgen insensitive prostate cancer and caveolin-1. Caveolin-1 is a major structural component of caveolae, membrane micro-domains known to have important roles in signal transduction and lipid transport.

Materials And Methods: A review of the literature relevant to androgen insensitive caveolin-1 and prostate cancer included the first published report in 1998 through those published in March 2002.

View Article and Find Full Text PDF

We identified a novel mouse gene, mRTVP-1, as a p53 target gene using differential display PCR and extensive promoter analysis. The mRTVP-1 protein has 255 amino acids and differs from the human RTVP-1 (hRTVP-1) protein by two short in-frame deletions of two and nine amino acids. RTVP-1 mRNA was induced in multiple cancer cell lines by adenovirus-mediated delivery of p53 and by gamma irradiation or doxorubicin both in the presence and in the absence of endogenous p53.

View Article and Find Full Text PDF