Publications by authors named "Chengyue Wang"

Volumetric muscle loss (VML) significantly impairs the inherent regenerative ability of skeletal muscle and results in chronic functional impairment. Polysaccharides in the muscle extracellular matrix are crucial for regulating cell proliferation and differentiation. Recent studies indicate that fucoidan has beneficial effects on musculoskeletal conditions.

View Article and Find Full Text PDF

Spintronic THz emitters have been widely studied due to their advantages of broadband frequency, high efficiency, and easy fabrication. The spintronic THz signal is proportional to the magnetization of the ferromagnetic (FM) layer and requires an external magnetic field to maximize the THz signal intensity. Recently, a field-free emitter was designed based on a CoFeB/IrMn heterostructure via the exchange bias between two films.

View Article and Find Full Text PDF

Background: Percutaneous mesh-container-plasty (PMCP), a modified traditional percutaneous kyphoplasty (PKP) technique, is increasingly being used to treat osteoporotic vertebral compression fractures with up-endplate injury. This retrospective study aimed to compare the clinical and radiological results of PKP and PMCP for the treatment of this disease.

Methods: We retrospectively analyzed the medical records of patients with osteoporotic compression fractures and upper endplate injuries treated at our hospital between January 2019 and December 2021.

View Article and Find Full Text PDF

Objective: In the treatment of lumbar degenerative spondylolisthesis (LDS) with Posterior lumbar interbody fusion (PLIF) surgery, interbody fusion implants play a key role in supporting the vertebral body and facilitating fusion. The objective of this study was to assess the impact of implantation depth on sagittal parameters and functional outcomes in patients undergoing PLIF surgery.

Methods: This study reviewed 128 patients with L4-L5 LDS between January 2016 and August 2019.

View Article and Find Full Text PDF

Biodegradable electrospun bone repair materials are effective means to treat bone defects. However, because the electrospun substrates are mostly organic polymer materials, there is a lack of real-time and intuitive monitoring methods for their degradation in vivo. Therefore, it is of great significance to develop in vivo traced electrospun bone repair materials for postoperative observation of their degradation.

View Article and Find Full Text PDF

In bone tissue engineering, the bone immunomodulatory properties of biomaterials are critical for bone regeneration, which is a synergistic process involving physiological activities like immune response, osteogenesis, and angiogenesis. The effect of the macrophage immune microenvironment on the osteogenesis and angiogenesis of various material extracts was examined in this experiment using Mgand Nano-hydroxyapatite/collagen (nHAC) in both a single application and a combined form. This studyrevealed that the two compounds combined significantly inhibited the NF-B signaling pathway and reduced the release of inflammatory factors from macrophages when compared with the extraction phase alone.

View Article and Find Full Text PDF

Context: Two-dimensional materials are a new and promising research field in materials science. This is mainly attributed to their unique photoelectric and chemical properties. In addition to possessing unique optoelectronic and chemical properties, two-dimensional materials also have important application prospects in the field of field-effect devices.

View Article and Find Full Text PDF

This study delves into the factors that contribute to the severity of single-vehicle crashes, focusing on enhancing both computational speed and model robustness. Utilizing a mixed logit model with heterogeneity in means and variances, we offer a comprehensive understanding of the complexities surrounding crash severity. The analysis is grounded in a dataset of 39,788 crash records from the UK's STATS19 database, which includes variables such as road type, speed limits, and lighting conditions.

View Article and Find Full Text PDF

Volumetric muscle loss (VML) is a condition that results in the extensive loss of 20 % or more of skeletal muscle due to trauma or tumor ablation, leading to severe functional impairment and permanent disability. The current surgical interventions have limited functional regeneration of skeletal muscle due to the compromised self-repair mechanism. Melatonin has been reported to protect skeletal muscle from exercise-induced oxidative damage and holds great potential to treat muscle diseases.

View Article and Find Full Text PDF

Background: More and more investigations reveal that circular RNAs (circRNAs) are involved in cancer progression. CircRNA UBAP2 was closely related to prostate cancer. However, the biological function and specifical mechanism of circUBAP2 are still poorly discovered in prostate cancer (PCa).

View Article and Find Full Text PDF

The world continues to contend with COVID-19, fueled by the emergence of viral variants. At the same time, a subset of convalescent individuals continues to experience persistent and prolonged sequelae, known as long COVID. Clinical, autopsy, animal and in vitro studies all reveal endothelial injury in acute COVID-19 and convalescent patients.

View Article and Find Full Text PDF

Tumor progression and cancer metastasis has been linked to the release of microparticles (MPs), which are shed upon cell activation or apoptosis and display parental cell antigens, phospholipids such as phosphatidylserine (PS), and nucleic acids on their external surfaces. In this review, we highlight the biogenesis of MPs as well as the pathophysiological processes of PS externalization and its involvement in coagulation activation. We review the available evidence, suggesting that coagulation factors (mainly tissue factor, thrombin, and fibrin) assist in multiple steps of tumor dissemination, including epithelial-mesenchymal transition, extracellular matrix remodeling, immune escape, and tumor angiogenesis to support the formation of the pre-metastatic niche.

View Article and Find Full Text PDF

In this study, response surface methodology (RSM) and artificial neural network (ANN) were used to predict and validate the optimal processing method of Schizonepetae Herba Carbonisata (SHC). The highest overall desirability (OD) value of the total flavonoids content (TFC), total tannin content (TTC), and adsorption capacity (AC) were used as response values. The optimal processing technology processing time lasted 10 min at a processing temperature of 178 °C and the herbs/machine had a volume of 77 g/5 L.

View Article and Find Full Text PDF

Owing to their excellent properties, magnesium alloys are widely used in bone tissue engineering. However, considerable work has been conducted to control the degradation rate and improve the cytocompatibility of magnesium alloys. In this study, low-cost production introduced a new bone repair composite (PCL-nHAC/Mg-Ca), which was composed of nano-hydroxylapatite-collagen (nHAC), polycaprolactone (PCL) and Mg-Ca alloy substrate treated by micro- arc oxidation (MAO).

View Article and Find Full Text PDF

Background: This study aims to compare the clinical efficacy of percutaneous vertebroplasty (PVP) and percutaneous kyphoplasty (PKP) in the treatment of osteoporotic vertebral asymmetric compression fracture (OVACF).

Methods: This study retrospectively reviewed the patients who were diagnosed with OVACF between September 2015 and July 2019. Forty-one patients received PVP surgery (group A), and 44 patients received PKP surgery (group B).

View Article and Find Full Text PDF

Magnesium (Mg) and its alloys show high degrees of biocompatibility and biodegradability, used as biodegrad able materials in biomedical applications. In this study, Polymethyl methacrylate (PMMA) - mineralized collagen (nano-Hydroxyapatite/collagen; nHAC)/Mg-Ca composite materials were prepared, to study the angiogenesis ability of its composite materials on Human umbilical vein endothelial cells (HUVECs) and its osteogenesis effect in vivo. The results showed that the PMMA-nHAC reinforcement materials can promote the proliferation and adhesion in HUVECs of Mg matrix significantly, it can enhance the migration motility and VEGF expression of HUVECs.

View Article and Find Full Text PDF

Lung injury may persist during the recovery period of COVID-19 as shown through imaging, six-minute walk, and lung function tests. The pathophysiological mechanisms leading to long COVID have not been adequately explained. Our aim is to investigate the basis of pulmonary susceptibility during sequelae and the possibility that prothrombotic states may influence long-term pulmonary symptoms of COVID-19.

View Article and Find Full Text PDF

Many discharged COVID-19 patients affected by sequelae experience reduced quality of life leading to an increased burden on the healthcare system, their families and society at large. Possible pathophysiological mechanisms of long COVID include: persistent viral replication, chronic hypoxia and inflammation. Ongoing vascular endothelial damage promotes platelet adhesion and coagulation, resulting in the impairment of various organ functions.

View Article and Find Full Text PDF

As more is learned about the pathophysiological mechanisms of COVID-19, systemic thrombosis has been recognized as being associated with more severe clinical manifestations, mortality and sequelae. As many as 40% of patients admitted to the hospital due to COVID-19 have acute kidney injury, with coagulation abnormalities the main cause of impaired function. However, the mechanism of renal thrombosis and the process leading to kidney injury are unclear.

View Article and Find Full Text PDF

Magnesium (Mg) alloy with good mechanical properties and biodegradability is considered as one of the ideal bone repair materials. However, the rapid corrosion of Mg-based metals can pose harm to the function of an implant in clinical applications. In this study, micro-arc oxidation coating was prepared on the surface of the Mg-Ca matrix, then the chitosan and mineralized collagen (nano-hydroxyapatite/collagen; nHAC) were immobilized on the surface of the MAO/Mg-Ca matrix to construct the CS-nHAC/Mg-Ca composites of different component proportions (the ratio of CS to nHAC is 2:1, 1:1, and 1:2, respectively).

View Article and Find Full Text PDF

Circulating neutrophil extracellular traps (NETs) resistant to t-PA have not been studied completely although NETs in thrombi may contribute to tissue plasminogen activator (t-PA) resistance. This research intended to elucidate whether circulating NETs are associated with t-PA resistance and the underlying mechanism. The levels of NETs were detected in the circulating neutrophils, ischemic brain tissue of acute ischemic stroke (AIS) patients, and transient middle cerebral artery occlusion (tMCAO) models.

View Article and Find Full Text PDF

Background: Nonalcoholic steatohepatitis (NASH) patients are at a high risk of developing venous thromboembolism, with a high rate of morbidity and mortality. The role of neutrophil extracellular traps (NETs) in procoagulant activity (PCA) in patients with NASH remains unclear. Our study aimed to investigate the formation of NETs in NASH patients stimulated by specific pro-inflammatory factors.

View Article and Find Full Text PDF