The massive usage of phthalate esters (PAEs) has caused serious pollution. Bacterial degradation is a potential strategy to remove PAE contamination. So far, an increasing number of PAE-degrading strains have been isolated, and the catabolism of PAEs has been extensively studied and reviewed.
View Article and Find Full Text PDFDimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), butyl benzyl phthalate (BBP), bis(2-ethylhexyl) phthalate (DEHP), and di-n-octyl phthalate (DOP) are hazardous chemicals listed as priority pollutants that disrupt endocrine systems. According to available reports, these six priority phthalate esters (PAEs) are considered the most polluting; however, no studies have been conducted on the efficient remediation of these PAEs. We therefore designed and constructed a synthetic bacterial consortium capable of the simultaneous and efficient degradation of six priority PAEs in minimal inorganic salt medium (MSM) and soil.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
June 2023
A gene cluster , responsible for nicotine degradation via a variant of the pyridine and pyrrolidine pathways, was previously identified in Sphingomonas melonis TY, but the regulation mechanism remains unknown. The gene within the cluster was predicted to encode a TetR family transcriptional regulator. Deletion of resulted in a notably shorter lag phase, higher maximum turbidity, and faster substrate degradation when cultivated in the presence of nicotine.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
February 2022
Nicotine is a harmful pollutant mainly from the waste of tobacco factories. It is necessary to remove nicotine via high efficient strategies such as bioremediation. So far, an increasing number of nicotine degrading strains have been isolated.
View Article and Find Full Text PDF